首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The crystal structure of the spin‐canted antiferromagnet β‐p‐NCC6F4CNSSN. at 12 K (reported in this work) was found to adopt the same orthorhombic space group as that previously determined at 160 K. The change in the magnetic properties of these two crystal structures has been rigorously studied by applying a first‐principles bottom‐up procedure above and below the magnetic transition temperature (36 K). Calculations of the magnetic exchange pathways on the 160 K structure reveal only one significant exchange coupling (J(d1)=?33.8 cm?1), which generates a three‐dimensional diamond‐like magnetic topology within the crystal. The computed magnetic susceptibility, χ(T), which was determined by using this magnetic topology, quantitatively reproduces the experimental features observed above 36 K. Owing to the anisotropic contraction of the crystal lattice, both the geometry of the intermolecular contacts at 12 K and the microscopic JAB radical–radical magnetic interactions change: the J(d1) radical–radical interaction becomes even more antiferromagnetic (?43.2 cm?1) and two additional ferromagnetic interactions appear (+7.6 and +7.3 cm?1). Consequently, the magnetic topologies of the 12 and 160 K structures differ: the 12 K magnetic topology exhibits two ferromagnetic sublattices that are antiferromagnetically coupled. The χ(T) curve, computed below 36 K at the limit of zero magnetic field by using the 12 K magnetic topology, reproduces the shape of the residual magnetic susceptibility (having subtracted the contribution to the magnetization arising from spin canting). The evolution of these two ferromagnetic JAB contributions explains the change in the slope of the residual magnetic susceptibility in the low‐temperature region.  相似文献   

2.
《化学:亚洲杂志》2017,12(22):2929-2941
In contrast to diradicals connected by alternant hydrocarbons, only a few studies on those connected by nonalternant hydrocarbons have been reported. The syntheses, structures, and magnetic properties of azulene‐1,3‐diyl linked bis(nitronyl nitroxide) (NN2Az) and bis(iminonitroxide) (IN2Az) diradicals and their Cu(hfac)2 (hfac=hexafluoroacetylacetonate) complexes were investigated. NN2Az was shown to have an intramolecular ferromagnetic interaction with J obs/k B=+10.0 K (H =−2J S 1 ⋅S 2) between (nitronyl nitroxide) spins, whereas IN2Az was estimated to have a much weaker intramolecular magnetic interaction. The reactions of NN2Az and IN2Az with Cu(hfac)2 gave a 1:2 [{Cu(hfac)2}2(NN2Az)] complex and a 1:1 [Cu(hfac)2(IN2Az)] ⋅ C6H12 complex, respectively. [{Cu(hfac)2}2(NN2Az)] showed strong intramolecular antiferromagnetic interactions (J 1‐Cu‐R/k B≈−800 K, J 2‐Cu‐R/k B≈−500 K) between the CuII spins and the coordinating NN spins, whereas [Cu(hfac)2(IN2Az)] exhibited a ferromagnetic exchange interaction (J obs‐Cu‐R/k B=+114 K) between the CuII spin and the imino‐coordinated iminonitroxide spin.  相似文献   

3.
The TTTA ? Cu(hfac)2 polymer ( 1 ; in which TTTA=1,3,5‐trithia‐2,4,6‐triazapentalenyl, and hfac=(1,1,1,5,5,5)‐hexafluoroacetylacetonate) is one of the most prominent examples of the rational use of the ‘metal–radical’ synthetic approach to achieve ferromagnetic interactions. Experimentally, the magnetic topology of 1 could not be fully deciphered. Herein, the first‐principles bottom‐up procedure was applied to elucidate the nature and strength of the magnetic JAB exchange interactions present in 1 . The computed JAB values give rise to a 2D magnetic topology of ferromagnetic dimers (+11.9 cm?1) coupled through weaker antiferromagnetic interactions (?3.0 and ?3.2 cm?1) in two different spatial directions. The hitherto unknown origin of the antiferromagnetic interdimer interactions is thus unveiled. By using the 2D magnetic topology, the agreement between calculated and experimental χT(T) data is extraordinary. In the metal–radical TTTA ? Cu(hfac)2 compound, the computational model transcends the local dimer cluster model owing to strong interactions between metal centers and organic radicals, thereby creating a de facto biradical. In addition, it is shown that the magnetic topology cannot be inferred from the polymeric [TTTA ??? Cu(hfac)2]n crystal motif, that is, from its chemical coordination pattern. Instead, one should think in terms of magnetic building blocks, namely, the de facto biradicals.  相似文献   

4.
Abstract. Two radical–LnIII–radical complexes, [Ln(hfac)3(NITPh‐Ph)2] [Ln = Gd ( 1 ) and Ho ( 2 ), hfac = hexafluoroacetylacetonate; and NITPh‐Ph = 4′‐biphenyl‐4, 4, 5, 5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide] were synthesized and characterized by X‐ray diffraction, elemental analysis, magnetic measurements, as well as IR and UV/Vis spectroscopy. X‐ray crystal structure analysis revealed that the structures of both complexes are isomorphous, the central LnIII ions are coordinated by six oxygen atoms from three hfac ligand molecules and two oxygen atoms from nitronyl radicals. The temperature dependencies of the magnetic susceptibilities were studied. They showed that in the GdIII complex, ferromagnetic interactions between GdIII and the radicals and antiferromagnetic interactions between the radicals coexist in this system (with JRad–Gd = 0.1 cm–1, JRad–Rad = –0.309 cm–1).  相似文献   

5.
Four Ln(III) complexes based on a new nitronyl nitroxide radical have been synthesized and structurally characterized: {Ln(hfac)3[NITPh(MeO)2]2} (Ln = Eu( 1 ), Gd( 2 ), Tb( 3 ), Dy( 4 ); NITPh(MeO)2 = 2‐(3′,4′‐dimethoxyphenyl)‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide; hfac = hexafluoroacetylacetonate). The single‐crystal X‐ray diffraction analysis shows that these complexes have similar mononuclear trispin structures, in which central Ln(III) ion is eight‐coordinated by two O‐atoms from two nitroxide groups and six O‐atoms from three hfac anions. The variable temperature magnetic susceptibility study reveals that there exist ferromagnetic interactions between Gd(III) and the radicals, and antiferromagnetic interactions between two radicals (JGd‐Rad = 3.40 cm?1, JRad‐Rad = ?9.99 cm?1) in complex 2 . Meanwhile, antiferromagnetic interactions are estimated between Eu(III) (or Dy(III)) and radicals in complexes 1 and 4 , and ferromagnetic interaction between Tb(III) and radicals in complex 3 , respectively.  相似文献   

6.
7‐(4‐Fluorophenyl) and 7‐phenyl‐substituted 1,3‐diphenyl‐1,4‐dihydro‐1,2,4‐benzotriazin‐4‐yl radicals were characterized by X‐ray diffraction analysis and variable‐temperature magnetic susceptibility studies. The radicals pack in 1D π stacks of equally spaced slipped radicals with interplanar distances of 3.59 and 3.67 Å and longitudinal angles of 40.97 and 43.47°, respectively. Magnetic‐susceptibility studies showed that both radicals exhibit antiferromagnetic interactions. Fitting the magnetic data revealed that the behavior is consistent with 1D regular linear antiferromagnetic chain with J=?12.9 cm?1, zJ′=?0.4 cm?1, g=2.0069 and J=?11.8 cm?1, zJ′=?6.5 cm?1, g=2.0071, respectively. Magnetic‐exchange interactions in benzotriazinyl radicals are sensitive to the degree of slippage, and inter‐radical separation and subtle changes in structure alter the fine balance between ferro‐ and antiferromagnetic interactions.  相似文献   

7.
This paper reports a theoretical analysis of the electronic structure and magnetic properties of a ferromagnetic CuII [3×3] grid. A two‐step strategy, combining calculations on the whole grid and on binuclear fragments, has been employed to evaluate all the magnetic interactions in the grid. The calculations confirm an S=7/2 ground state, which is in accordance with the magnetisation versus field curve and the thermal dependence of the magnetic moment data. Only the first‐neighbour coupling terms present non‐negligible amplitudes, all of them in agreement with the structure and arrangement of the Cu 3d magnetic orbitals. The results indicate that the dominant interaction in the system is the antiferromagnetic coupling between the ring and the central Cu sites (J3=J4≈?31 cm?1). In the ring two different interactions can be distinguished, J1=4.6 cm?1 and J2=?0.1 cm?1, in contrast to the single J model employed in the magnetic data fit. The calculated J values have been used to determine the energy level distribution of the Heisenberg magnetic states. The effective magnetic moment versus temperature plot resulting from this ab initio energy profile is in good agreement with the experimental curve and the fitting obtained with the simplified spin model, despite the differences between these two spin models. This study underlines the role that the theoretical evaluations of the coupling constants can play on the rationalisation of the magnetic properties of these complex polynuclear systems.  相似文献   

8.
1,3,7,8‐Tetraphenyl‐4,8‐dihydro‐1H‐imidazolo[4,5g][1,2,4]benzotriazin‐4‐yl ( 5 ), 8‐(4‐bromophenyl)‐1,3,7‐triphenyl‐4,8‐dihydro‐1H‐imidazolo[4,5g][1,2,4]benzotriazin‐4‐yl ( 6 ), and 8‐(4‐methoxyphenyl)‐1,3,7‐triphenyl‐4,8‐dihydro‐1H‐imidazolo[4,5g][1,2,4]benzotriazin‐4‐yl ( 7 ) were characterized by using X‐ray diffraction crystallography, variable‐temperature magnetic susceptibility studies, and DFT calculations. Radicals 5 – 7 pack in 1 D π stacks made of radical pairs with alternate short and long interplanar distances. The magnetic susceptibility (χ vs. T) of radicals 5 and 6 exhibit broad maxima at (50±2) and (50±4) K, respectively, and are interpreted in terms of an alternating antiferromagnetic Heisenberg linear chain model with average exchange‐interaction values of J=?31.3 and ?35.4 cm?1 (gsolid=2.0030 and 2.0028) and an alternation parameter a=0.15 and 0.38 for 5 and 6 , respectively. However, radical 7 forms 1 D columns of radical pairs with alternating distances; one of the interplanar distances is significantly longer than the other, which decreases the magnetic dimensionality and leads to discrete dimers with a ferromagnetic exchange interaction between the radicals (2J=23.6 cm?1, 2zJ′=?2.8 cm?1, gsolid=2.0028). Magnetic exchange‐coupling interactions in 1,2,4‐benzotriazinyl radicals are sensitive to the degree of slippage and inter‐radical separation, and such subtle changes in structure alter the fine balance between ferro‐ and antiferromagnetic interactions.  相似文献   

9.
X‐ray studies show that 1,3‐diphenyl‐7‐(thien‐2‐yl)‐1,4‐dihydro‐1,2,4‐benzotriazin‐4‐yl ( 6 ) adopts a distorted, slipped π‐stacked structure of centrosymmetric dimers with alternate short and long interplanar distances (3.48 and 3.52 Å). Cyclic voltammograms of 7‐(thien‐2‐yl)benzotriazin‐4‐yl 6 show two fully reversible waves that correspond to the ?1/0 and 0/+1 processes. EPR and DFT studies on radical 6 indicate that the spin density is mainly delocalized over the triazinyl fragment. Magnetic susceptibility measurements show that radical 6 obeys Curie–Weiss behavior in the 5–300 K region with C=0.378 emu K mol?1 and θ=+4.72 K, which is consistent with ferromagnetic interactions between S=1/2 radicals. Fitting the magnetic susceptibility revealed the behavior is consistent with an alternating ferromagnetic chain (g=2.0071, J1=+7.12 cm?1, J2=+1.28 cm?1).  相似文献   

10.
The synthesis and the solid state magnetic properties of (nitronyl nitroxide)‐substituted trioxytriphenylamine radical cation tetrachlorogallate, NNTOT+·GaCl4? , are reported. In the temperature region between 300 and 3 K, the magnetic behavior is characterized by the strong intramolecular ferromagnetic interaction (J/kB=+400 K) between the radical ( NN ) and the radical cation ( TOT +) and the weak intermolecular antiferromagnetic interaction (J/kB=?1.9 K) between NNTOT+ ions. Below 3 K, a 3D‐type long‐range magnetic ordering into a weak ferromagnet was observed (TN=2.65 K). The magnetic entropy (Smag=8.97 J K?1 mol?1) obtained by the heat capacity measurement is in good agreement with the theoretical value of R ln3=9.13 J K?1 mol?1 based on the S=1 state.  相似文献   

11.
合成了一种新型不对称Schiff碱铜前体配合物KCuL和一种化学组成为[(CuL)2Mn (H2O)2]·0.5CH3OH·0.5CH3OH的顺式异三核配合物,并通过元素分析、IR谱的方法对其进行了表征(其中H3L = N-(2-{[(1E)-(5-氯-2-羟基苯基)亚甲基]胺基}乙基)-2-羟基苯甲酰胺)。利用X-射线单晶衍射方法对三核配合物的晶体结构进行了测定。该三核配合物的每一晶胞单元含有一个顺式中性异三核分子和两个无序的甲醇分子。中心锰离子Mn2+处于O6形成的变形八面体几何构型,而两个配阴离子[CuL]-在Mn2+周围呈顺式排布。磁性表明该三核配合物不仅具有分子内反铁磁作用,而且三核单元之间具有弱的铁磁交换作用,磁参数分别为J = -12.1 cm-1, g = 2.20 and zj¢ = 1.37 cm-1.  相似文献   

12.
The mononuclear complex [Ni(HOphen)(OSO3)(H2O)3] · 5H2O (HOphen = 1, 10‐phenanthrolin‐2‐ol) was prepared and its single structure was determined by X‐ray crystallography. In this complex, the NiII ion has a distorted octahedral arrangement. Crystal structure analysis shows that two kinds of π–π stacking interactions and C–H ··· O short contact intermolecular interactions exist among the adjacent complexes. Fitting to the variable‐temperature magnetic susceptibility data gave the magnetic coupling constant, 2J = –0.98 cm–1. Theoretical calculations, based on density functional theory (DFT) coupling with the broken‐symmetry approach (BS), revealed that the π–π stacking magnetic coupling pathways resulted in weak ferromagnetic interactions with 2J = 4.86 cm–1 and 2J = 4.16 cm–1, respectively, for the adjacent NiII ions with separations of 8.568(19) Å and 8.749(32) Å, respectively; whereas the magnetic coupling pathway of the C–H ··· O short contact intermolecular interaction led to a weak antiferromagnetic interaction with 2J = –17.62 cm–1 for the adjacent NiII ions with a separation of 10.291(26) Å. The ferromagnetic coupling sign can be explained by the McConnell I spin‐polarization mechanism.  相似文献   

13.
The homometallic hexameric ruthenium cluster of the formula [RuIII63‐O)2(μ‐OH)2((CH3)3CCO2)12(py)2] ( 1 ) (py=pyridine) is solved by single‐crystal X‐ray diffraction. Magnetic susceptibility measurements performed on 1 suggest that the antiferromagnetic interaction between the RuIII centers is dominant, and this is supported by theoretical studies. Theoretical calculations based on density functional methods yield eight different exchange interaction values for 1 : J1=?737.6, J2=+63.4, J3=?187.6, J4=+124.4, J5=?376.4, J6=?601.2, J7=?657.0, and J8=?800.6 cm?1. Among all the computed J values, six are found to be antiferromagnetic. Four exchange values (J1, J6, J7 and J8) are computed to be extremely strong, with J8, mediated through one μ‐hydroxo and a carboxylate bridge, being by far the largest exchange obtained for any transition‐metal cluster. The origin of these strong interactions is the orientation of the magnetic orbitals in the RuIII centers, and the computed J values are rationalized by using molecular orbital and natural bond order analysis. Detailed NMR studies (1H, 13C, HSQC, NOESY, and TOCSY) of 1 (in CDCl3) confirm the existence of the solid‐state structure in solution. The observation of sharp NMR peaks and spin‐lattice time relaxation (T1 relaxation) experiments support the existence of strong intramolecular antiferromagnetic exchange interactions between the metal centers. A broad absorption peak around 600–1000 nm in the visible to near‐IR region is a characteristic signature of an intracluster charge‐transfer transition. Cyclic voltammetry experiments show that there are three reversible one‐electron redox couples at ?0.865, +0.186, and +1.159 V with respect to the Ag/AgCl reference electrode, which corresponds to two metal‐based one‐electron oxidations and one reduction process.  相似文献   

14.
The copper complex [CuCl2(TzHy)] has been synthesized and its crystal structure determined. The coordination complex contains polymeric [CuCl2(TzHy)]n chains in which the units are linked by μ‐chloro bridges. The chains run along the crystallographic c axis. The geometry around the copper(II) is best described as distorted square pyramidal. The equatorial positions are occupied by Cl(1) and Cl(2) ligands and one thiazolinic nitrogen atom and another hydrazinic nitrogen atom, from TzHy ligand. The axial position is occupied by the Cl(2b) ligand. The magnetic susceptibility measurements in the temperature range 4 – 290 K show a weak antiferromagnetic intrachain interactions (J = ?8.6 cm?1).  相似文献   

15.
We computationally design a series of azobenzene (AB)‐bridged double radicalized nucleobases, a novel kind of diradical Janus‐type nucleobases, and explore their spin coupling characteristics. Calculations prove that such diradical Janus‐bases not only normally match with their complementary bases, but also exhibit well‐defined diradical character with photo‐convertible intramolecular magnetic couplings (antiferromagnetic vs. ferromagnetic). Combination of four radical nucleobases (rG, rA, rC, rT) and photoswitch AB can yield 10 diradical Janus‐bases with different magnetic characteristics in which AB functions a bridge to mediate the spin coupling between two radical bases. The trans‐form supports mild antiferromagnetic couplings with the spin coupling constants (J) ranging from −153.6 cm−1 to −50.91 cm−1 while the cis‐form has weak magnetic couplings with ferromagnetic (0.22–8.50 cm−1) for most of them or antiferromagnetic (−0.77, −1.73, −3.30 cm−1) properties for only three. Further structural examination and frontier molecular orbital analyses indicate that the extended π conjugation for better spin polarization provides an effective through‐π‐bond pathway to mediate the spin coupling in the trans conformation while nonplanarity of the cis conformation weakens the through‐bond coupling and causes a competitive through‐space pathway and as an overall result inhibits the spin coupling between two spin moieties. Meanwhile, we also find that the J values of the cis conformation vary with their angle between the radical base and its linked phenylene. Furthermore, the magnetic properties of the diradical Janus‐bases can be significantly increased by interacting with metal ions. They also maintain a good UV absorption characteristics and there is a clear redshift compared with AB. This work provides a promising strategy for the rational design of photo‐convertible Janus‐base magnets as the magnetism‐tunable DNA building blocks. © 2018 Wiley Periodicals, Inc.  相似文献   

16.
The magnetic susceptibility of UO2ThO2 solid solutions has been measured from room temperature to 2.0 K. The magnetic moment and the Weiss constant have been determined in the temperature range in which the Curie-Weiss law holds. For the solid solutions showing antiferromagnetic transition, the Néel temperature has been also determined. These values decrease monotonically with increasing ThO2 concentration. The results were analyzed using the molecular field theory which includes the interaction between next-nearest neighbor spins. The interactions between nearest neighbor spins, J1, and those between next-nearest neighbor spins, J2, both decrease with increasing ThO2 concentration. The change of J1 with composition is larger than that of J2. The effect of magnetic dilution with ThO2 is considered to be stronger on the interaction between nearest neighbor uranium ions.  相似文献   

17.
Two polymorphs of supramolecular isomers, a discrete dimer and a zig‐zag chain, having the same chemical composition, [Mn(Hbit)Cl2] (Hbit=1‐methyl‐2‐(1H‐1,2,3‐triazol‐4‐yl)‐1H‐benzo[d]imidazole), were obtained solvothermally in a one‐pot synthesis. The isomers differ in a number of ways: orange blocks versus pale‐yellow needles, triclinic P versus orthorhombic Pbcn, double μ2‐Cl versus alternate single and triple μ2‐Cl, coordination number 5 versus 6, and antiparallel versus parallel near‐neighbor orientation of Hbit. The packing in each case is driven by the supramolecular interactions, H‐bonds (N?H???Cl, C?H???Cl) and π???π overlaps, calculated to be in the range 20–36 kcal mol?1. Calculations gave a difference of only 2 kcal mol?1 in favor of the dimer, which confirms with the observation of principally the dimer at short reaction time. ESI‐MS spectra of the dissolved crystals reveal the same fragments with similar distributions. The presence of two fragments at m/z 286.96 [MnIV(Hbit)Cl‐2H]+ and 323.94 [MnIII(Hbit)Cl2]+ indicates that [Mn(Hbit)Cl2] is the building unit in both cases; thus, the different orientations of the ligands lead to the two polymorphs stabilized by the respective supramolecular interactions. Importantly, the chain form represents the first example with alternate single and triple μ2‐Cl bridges. The magnetic interactions are weakly antiferromagnetic in both cases, with J in the range 0.07–0.34 cm?1; however, high‐field EPR analysis reveals moderate magneto‐anisotropy with D=0.26(1) cm?1, E=0.06(1) cm?1 and D=0.17(1) cm?1, E=0.03(1) cm?1, respectively.  相似文献   

18.
Four cyano‐bridged 1D bimetallic polymers have been prepared by using the paramagnetic building block trans‐[Ru(acac)2(CN)2]? (Hacac=acetylacetone): {[{Ni(tren)}{Ru(acac)2(CN)2}][ClO4]?CH3OH}n ( 1 ) (tren=tris(2‐aminoethyl)amine), {[{Ni(cyclen)}{Ru(acac)2(CN)2}][ClO4]? CH3OH}n ( 2 ) (cyclen=1,4,7,10‐tetraazacyclododecane), {[{Fe(salen)}{Ru(acac)2(CN)2}]}n ( 3 ) (salen2?=N,N′‐bis(salicylidene)‐o‐ethyldiamine dianion) and [{Mn(5,5′‐Me2salen)}2{Ru(acac)2(CN)2}][Ru(acac)2(CN)2]? 2 CH3OH ( 4 ) (5,5′‐Me2salen=N,N′‐bis(5,5′‐dimethylsalicylidene)‐o‐ethylenediimine). Compounds 1 and 2 are 1D, zigzagged NiRu chains that exhibit ferromagnetic coupling between NiII and RuIII ions through cyano bridges with J=+1.92 cm?1, z J′=?1.37 cm?1, g=2.20 for 1 and J=+0.85 cm?1, z J′=?0.16 cm?1, g=2.24 for 2 . Compound 3 has a 1D linear chain structure that exhibits intrachain ferromagnetic coupling (J=+0.62 cm?1, z J′=?0.09 cm?1, g=2.08), but antiferromagnetic coupling occurs between FeRu chains, leading to metamagnetic behavior with TN=2.6 K. In compound 4 , two MnIII ions are coordinated to trans‐[Ru(acac)2(CN)2]? to form trinuclear Mn2Ru units, which are linked together by π–π stacking and weak Mn???O* interactions to form a 1D chain. Compound 4 shows slow magnetic relaxation below 3.0 K with ?=0.25, characteristic of superparamagnetic behavior. The MnIII???RuIII coupling constant (through cyano bridges) and the MnIII???MnIII coupling constant (between the trimers) are +0.87 and +0.24 cm?1, respectively. Compound 4 is a novel single‐chain magnet built from Mn2Ru trimers through noncovalent interactions. Density functional theory (DFT) combined with the broken symmetry state method was used to calculate the molecular magnetic orbitals and the magnetic exchange interactions between RuIII and M (M=NiII, FeIII, and MnIII) ions. To explain the somewhat unexpected ferromagnetic coupling between low‐spin RuIII and high‐spin FeIII and MnIII ions in compounds 3 and 4 , respectively, it is proposed that apart from the relative symmetries, the relative energies of the magnetic orbitals may also be important in determining the overall magnetic coupling in these bimetallic assemblies.  相似文献   

19.
A new 3D MnII metal‐organic framework compound {Mn(phen)(dcbp)}n (H2dcbp = 4,4‐dicarboxy‐2,2′‐bipyridine, phen = 1,10‐phenanthroline) was isolated under hydrothermal conditions and structurally characterized. In the compound, the dcbp ligand is deprotonated to give a neutral species (metal:ligand with 1:1 stoichiometry). Along the c axis, the neighboring MnII ions are linked by two carboxylate bridges in µ2‐coordinating mode to generate a 1D zigzag chain, and these chains are interlinked by dicarboxylate groups of long dcbp ligands to generate a 3D (4,4)‐connected structure with the (42.84) net topology. IR and UV/Vis spectroscopy and variable temperature magnetic susceptibility measurements were made, which indicated weak antiferromagnetic interactions between the MnII ions of the compound.  相似文献   

20.
Two one‐dimensional compounds composed of a 1:1 ratio of MnIII salen‐type complex and NiII oximato moiety with different counter anions, PF6? and BPh4?, were synthesized: [Mn(3,5‐Cl2saltmen)Ni(pao)2(phen)]PF6 ( 1 ) and [Mn(5‐Clsaltmen)Ni(pao)2(phen)]BPh4 ( 2 ), where 3,5‐Cl2saltmen2?=N,N′‐(1,1,2,2‐tetramethylethylene)bis(3,5‐dichlorosalicylideneiminate); 5‐Clsaltmen2?=N,N′‐(1,1,2,2‐tetramethylethylene)bis(5‐chlorosalicylideneiminate); pao?=pyridine‐2‐aldoximate; and phen=1,10‐phenanthroline. Single‐crystal X‐ray diffraction study was carried out for both compounds. In 1 and 2 , the chain topology is very similar forming an alternating linear chain with a [‐MnIII‐ON‐NiII‐NO‐] repeating motif (where ‐ON‐ is the oximate bridge). The use of a bulky counteranion, such as BPh4?, located between the chains in 2 rather than PF6? in 1 , successfully led to the magnetic isolation of the chains in 2 . This minimization of the interchain interactions allows the study of the intrinsic magnetic properties of the chains present in 1 and 2 . While 1 and 2 possess, as expected, very similar paramagnetic properties above 15 K, their ground state is antiferromagnetic below 9.4 K and paramagnetic down to 1.8 K, respectively. Nevertheless, both compounds exhibit a magnet‐type behavior at temperatures below 6 K. While for 2 , the observed magnetism is well explained by a Single‐Chain Magnet (SCM) behavior, the magnet properties for 1 are induced by the presence in the material of SCM building units that order antiferromagnetically. By controlling both intra‐ and interchain magnetic interactions in this new [MnIIINiII] SCM system, a remarkable AF phase with a magnet‐type behavior has been stabilized in relation with the intrinsic SCM properties of the chains present in 1 . This result suggests that the simultaneous enhancement of both intrachain (J) and interchain (J′) magnetic interactions (with keeping J ? J′), independently of the presence of AF phase might be an efficient route to design high temperature SCM‐based magnets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号