首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ion Association in Lanthanide Chloride Solutions
Authors:Dr Aaron R Finney  Dr Sébastien Lectez  Dr Colin L Freeman  Prof John H Harding  Dr Stephen Stackhouse
Institution:1. Department of Materials Science and Engineering, Sir Robert, Hadfield Building, University of Sheffield, Sheffield, S1 3JD UK;2. School of Earth and Environment, University of Leeds, Leeds, LS2 9JT UK
Abstract:A better understanding of the solution chemistry of the lanthanide (Ln) salts in water would have wide ranging implications in materials processing, waste management, element tracing, medicine and many more fields. This is particularly true for minerals processing, given governmental concerns about lanthanide security of supply and the drive to identify environmentally sustainable processing routes. Despite much effort, even in simple systems, the mechanisms and thermodynamics of LnIII association with small anions remain unclear. In the present study, molecular dynamics (MD), using a newly developed force field, provide new insights into LnCl3(aq) solutions. The force field accurately reproduces the structure and dynamics of Nd3+, Gd3+ and Er3+ in water when compared to calculations using density functional theory (DFT). Adaptive-bias MD simulations show that the mechanisms for ion pairing change from dissociative to associative exchange depending upon cation size. Thermodynamics of association reveal that whereas ion pairing is favourable, the equilibrium distribution of species at low concentration is dominated by weakly bound solvent-shared and solvent-separated ion pairs, rather than contact ion pairs, reconciling a number of contrasting observations of LnIII–Cl association in the literature. In addition, we show that the thermodynamic stabilities of a range of inner sphere and outer sphere urn:x-wiley:09476539:media:chem201900945:chem201900945-math-0001 coordination complexes are comparable and that the kinetics of anion binding to cations may control solution speciation distributions beyond ion pairs. The techniques adopted in this work provide a framework with which to investigate more complex solution chemistries of cations in water.
Keywords:ion pairing  lanthanides  molecular dynamics  potential of mean force  rare-earth elements
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号