首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of the reactions of phenyl 2,4,6-trinitrophenyl ether with piperidine and cyclohexylamine respectively were studied at different amine concentrations in benzene. The reaction of cyclohexylamine was not base-catalysed while that of piperidine was catalysed by one molecule of the nucleophilic amine. Addition of small amounts of hydrogen-bond donor solvent, methanol to the benzene medium of the reactions produced different effects—rate diminution followed by rate increase in one and continuous rate diminution in the other. These effects are compared with that of aniline (previously studied) in which a continuous rate increase was observed. The results are rationalized in terms of the effect of amine-solvent interaction on the nucleophilicity of the amines in addition to some other factors operating through cyclic transition states leading to products. It is evident from the rationalization that the idea of ‘dimer nucleophile’ in nucleophilic aromatic substitution reactions is erroneous.  相似文献   

2.
Microwave-assisted enzyme-catalyzed reactions in various solvent systems   总被引:2,自引:0,他引:2  
The work describes the accelerated enzymatic digestion of several proteins in various solvent systems under microwave irradiation. The tryptic fragments of the proteins were analyzed by matrix-assisted laser desorption/ionization mass spectrometry. Under the influence of rapid microwave heating, these enzymatic reactions can proceed in a solvent such as chloroform, which, under traditional digestion conditions, renders the enzyme inactive. The digestion efficiencies and sequence coverages were increased when the trypsin digestions occurred in acetonitrile-, methanol- and chloroform-containing solutions that were heated under microwave irradiation for 10 min using a commercial microwave applicator. The percentage of the protein digested under microwave irradiation increased with the relative acetonitrile content, but decreased as the methanol content was increased. These observations suggest that acetonitrile does not deactivate the enzyme during the irradiation period; in contrast, methanol does deactivate it. In all cases, the digestion efficiencies under microwave irradiation exceed those under conventional conditions.  相似文献   

3.
The Diels-Alder reaction between cyclopentadiene and three dienophiles (acrolein, methyl acrylate and acrylonitrile) having different hydrogen bond acceptor abilities has been carried out in several ionic liquids and molecular solvents in order to obtain information about the factors affecting reactivity and selectivity. The solvent effects on these reactions are examined using multiparameter linear solvation energy relationships. The collected data provide evidence that the solvent effects are a function of both the solvent and the solute. For a solvent effect to be seen, the solute must have a complimentary character; selectivities and rates are determined by the solvent hydrogen bond donation ability (alpha) in the reactions of acrolein and methyl acrylate, but not of acrylonitrile.  相似文献   

4.
Koner AL  Pischel U  Nau WM 《Organic letters》2007,9(15):2899-2902
Kinetic solvent effects on hydrogen abstractions, namely, acceleration in nonpolar solvents, have been presumed to be restricted to O-H hydrogen donors. We demonstrate that also abstractions from C-H and even Sn-H bonds by cumyloxyl radicals and n,pi*-excited 2,3-diazabicyclo[2.2.2]oct-2-ene are fastest in the gas phase and nonpolar solvents but slowest in acetonitrile. Accordingly, solvent effects on hydrogen abstractions are more general, presumably due to stabilization of the reactive oxygen or nitrogen species in polar solvents.  相似文献   

5.
By using spectrophotometric and potentiometric techniques, the formation constants of the species formed in the systems H++W(VI) + ethylenediaminediacetic acid and H+ + ethylenediaminediacetic acid were determined in aqueous solutions of propanol at 25°C and a constant ionic strength of 0.1 mol dm−3 sodium perchlorate. The composition of the complex was determined by the continuous variation method. It was shown that tungsten(VI) formed a mononuclear 1: 1 complex with ethylenediaminediacetic acid of the type WO3L3− at −log[H+] = 5.8. The formation constants in various media were analyzed in terms of the Kamlet-Taft parameters. Solvents were parameterized by dipolarity/polarizability scales π*, hydrogen-bond donor (HBD) strength α, and hydrogen-bond acceptor strength β. Linear dependences (LSERs) on these solvent parameters were used to correlate and predict a wide variety of solvent effects and provide an analysis of them. Linear relationships were observed when log KS values were plotted versus π*. Finally, the results are discussed in terms of the effect of solvents on complex formation. The article is published in the original.  相似文献   

6.
So TS  Huie CW 《Electrophoresis》2001,22(11):2143-2149
The use of salting-out effect for the off-line preconcentration of charged analytes in capillary electrophoresis is demonstrated for the first time. Using benzalkonium chloride (BAK) as model compound, a mixture of cationic surfactants consisting of even-numbered alkylbenzyl quaternary ammonium homologues (C8-C18), the addition of appropriate amounts of sodium chloride and acetonitrile in the sample solution (2 mL sample volume) was found to be capable of providing ca. 40-fold enhancement in detection sensitivity. In addition to affording a preconcentrating effect due to the extraction of BAK in the smaller volume water-miscible organic solvent phase (acetonitrile), the organic solvent also serves to improve the peak area and shape of the longer chain surfactants. Optimal experimental conditions, such as volume of acetonitrile and concentration of sodium chloride, for the preconcentration of BAK with good preconcentration factors and reproducibility were investigated. The usefulness of the present method was demonstrated for the improved determination of BAK present in commercially available industrial and pharmaceutical products.  相似文献   

7.
Adsorption of acetonitrile and methanol was measured on non-endcapped and endcapped octadecyl stationary phases. The results enabled us to characterize the effect of end-capping on the adsorption of the organic modifiers. Our results clearly demonstrate how the end-capping groups modify the chromatographic properties of adsorbents. Differences between solvent adsorption mechanisms are also discussed. Adsorption of acetonitrile is governed by hydrophobic effects whereas methanol is adsorbed by the organic ligand by a hydrophobic interaction and by the residual silanols by hydrogen-bond formation and dipole–dipole interactions.  相似文献   

8.
A theory based on the hydrogen-bond configuration is proposed and applied to alcohol/alcohol binary solutions. The theory leads explicit expressions for the mixing Gibbs energy and reproduces the experiments on the crystal–liquid phase-diagrams of pure crystals and co-crystals and mixing heats with the parameters common to these experiments. The mixing entropy arises from the increase in the hydrogen-bonding availability of proton donors to approach hydrogen-bond-free proton acceptors. The mixing heat arises from a balance between the contribution from maintaining the original associations in pure liquids and the contribution from a construction of hydrogen bonds freely to hydrogen-bond-free acceptors. When hydrogen-bond associations between component-1 and component-2 are distinguished statistically from associations in each pure component, we call the solution as a cooperative solution that has at least one stoichiometric cooperative concentration point. Some shorter alcohol/alcohol solutions and some aromatic alcohol/aromatic alcohol solutions, however, have no cooperative point and we call those solutions as the ideal hydrogen-bond solutions of which properties are mainly governed by the ideal-gas-like mixing hydrogen-bond entropy. The hydrogen-bond energies of various combinations of the proton acceptor and the proton donor have been estimated consistently from the fittings of the theory, the shifts by hydrogen bonding of the OH stretching in the Raman or IR spectroscopy, and the sublimation energy of crystals. The present theory reveals the characteristics of hydrogen-bond solutions and gives some predictions.  相似文献   

9.
The solvent effect on the experimental activation barriers for the reactions of methyl iodide with chloride and thiocyanate ions was analyzed according to the Marcus and Shaik theories, considering SN2 mechanism in terms of a single electron shift. The linear increase in the solvent reorganization energy of the Marcus theory (after removing contributions from the specific solvation) with the solvent Pekar factor, describing the effect of the nonequilibrium solvent polarization, was observed for six aprotic solvents. The direct support of the title effect based on the Shaik theory was less evident; however, in general, the calculated activation barriers in 10 solvents change parallel with the experimental ones. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 35: 61–66, 2003  相似文献   

10.
A kinetic study of the hydrogen atom abstraction reactions from propanal (PA) and 2,2-dimethylpropanal (DMPA) by the cumyloxyl radical (CumO?) has been carried out in different solvents (benzene, PhCl, MeCN, t-BuOH, MeOH, and TFE). The corresponding reactions of the benzyloxyl radical (BnO?) have been studied in MeCN. The reaction of CumO? with 1,4-cyclohexadiene (CHD) also has been investigated in TFE solution. With CHD a 3-fold increase in rate constant (k(H)) has been observed on going from benzene, PhCl, and MeCN to TFE. This represents the first observation of a sizable kinetic solvent effect for hydrogen atom abstraction reactions from hydrocarbons by alkoxyl radicals and indicates that strong HBD solvents influence the hydrogen abstraction reactivity of CumO?. With PA and DMPA a significant decrease in k(H) has been observed on going from benzene and PhCl to MeOH and TFE, indicative of hydrogen-bond interactions between the carbonyl lone pair and the solvent in the transition state. The similar k(H) values observed for the reactions of the aldehydes in MeOH and TFE point toward differential hydrogen bond interactions of the latter solvent with the substrate and the radical in the transition state. The small reactivity ratios observed for the reactions of CumO? and BnO? with PA and DMPA (k(H)(BnO?)/k(H)(CumO?) = 1.2 and 1.6, respectively) indicate that with these substrates alkoxyl radical sterics play a minor role.  相似文献   

11.
The kinetics of SN2 reaction between phenacyl bromide and various amines in 12 different solvents were studied. Solvent effects on the rate of this reaction and free energy of activation, ΔG# , were interpreted by applying the Abraham-Kam-let-Taft (AKT) equation. UK solvent polarity (π1*), solvent hydrogen-bond basicity (β1) and Hildebrand cohesive density energy (δH2) are those parameters which increase the rate constant and decrease ΔG# , while solvent hydrogen-bond acidity (α1) will have the compensatory effect. A comparison among obtained values of second rate constants, k2, for different amines in a given solvent indicates that the amine reactivities are highly dependent on their structures. The consequent decrease of the rate constant for different amines in any given solvent was found to be: primary > secondary> tertiary. This order results from steric effects of amines.  相似文献   

12.
The effects of solvent composition on both the maximum charge states and charge state distributions of analyte ions formed by electrospray ionization were investigated using a quadrupole mass spectrometer. The charge state distributions of cytochrome c and myoglobin, formed from 47%/50%/3% water/solvent/acetic acid solutions, shift to lower charge (higher m/z) when the 50% solvent fraction is changed from water to methanol, to acetonitrile, to isopropanol. This is also the order of increasing gas-phase basicities of these solvents, although other physical properties of these solvents may also play a role. The effect is relatively small for these solvents, possibly due to their limited concentration inside the electrospray interface. In contrast, the addition of even small amounts of diethylamine (<0.4%) results in dramatic shifts to lower charge, presumably due to preferential proton transfer from the higher charge state ions to diethylamine. These results clearly show that the maximum charge states and charge state distributions of ions formed by electrospray ionization are influenced by solvents that are more volatile than water. Addition of even small amounts of two solvents that are less volatile than water, ethylene glycol and 2-methoxyethanol, also results in preferential deprotonation of higher charge state ions of small peptides, but these solvents actually produce an enhancement in the higher charge state ions for both cytochrome c and myoglobin. For instruments that have capabilities that improve with lower m/z, this effect could be taken advantage of to improve the performance of an analysis.  相似文献   

13.
Kinetic solvent effects on peroxyl radical reactions are easily determined using a new peroxyester-based radical clock method.  相似文献   

14.
The contribution of entropic factors to the penultimate unit effect in free-radical copolymerizations is discussed and exemplified. In addition, significant penultimate unit effects on radical selectivity in transfer reactions are demonstrated and are shown to have a significant polar component. Further, ring-opening copolymerization studies are presented and describe surprising results that seem to originate from strong solvent effects in copolymerization. These results could not have been predicted with current knowledge, prior to the experiment. The present contribution demonstrates in detail that radical reactions are highly complex and there are significant dangers and drawbacks in employing simplified kinetic models when in search of fundamental understanding.  相似文献   

15.
The cyclic voltammetric technique is used to study hydrogen-bond formation in some polar organic solvents (S) of electroanalytical interest (1,2-dimethoxy, tetrahydrofuran, dimethylformamide, dimethyl sulphoxide and pyridine). The cathodic shift of the proton reduction caused by stepwise addition of the solvent investigated to a solution of anhydrous perchloric acid in acetonitrile is utilized. The theoretical treatment applied produced evidence that HS+ and HS+2 are the only acidic species involved, so that the relevant formation constants can be evaluated. The data obtained mostly compare well with those available in the literature. The features that condition the tendency to hydrogen-bonding and the effect of hydrogen bonding on solvent basicity are discussed.  相似文献   

16.
The effect of high-intensity microwave radiation focused into a "hot spot" region in the vicinity of an electrode on electrochemical processes with and without coupled chemical reaction steps has been investigated in organic solvent media. First, the electrochemically reversible oxidation of ferrocene in acetonitrile and DMF is shown to be affected by microwave-induced thermal activation, resulting in increased currents and voltammetric wave shape effects. A FIDAP simulation investigation allows quantitative insight into the temperature distribution and concentration gradients at the electrode / solution interface. Next, the effect of intense microwave radiation on electroorganic reactions is considered for the case of ECE processes. Experimental data for the reduction of p-bromonitrobenzene, o-bromonitrobenzene, and m-iodonitrobenzene in DMF and acetonitrile are analyzed in terms of an electron transfer (E), followed by a chemical dehalogenation step (C), and finally followed by another electron-transfer step (E). The presence of the "hot spot" in the solution phase favors processes with high activation barriers.  相似文献   

17.
Density functional theory computations were done to study the 5-exo radical cyclization reactions of alpha-substituted 6,6-diphenyl-5-hexenyl radicals. The methoxy electron donor group substitution reduced the barrier to reaction by about 0.5 kcal/mol. On the other hand, the electron acceptor group substitutions (ethoxycarbonyl, carboxylic acid, carboxylate, and cyano) raised the barrier to reaction by varying amounts (0.5-2.1 kcal /mol). The entropic terms of these cyclization reactions are briefly discussed. Solvent effects on these reactions were explored by calculations that included a polarizable continuum model for the solvent. The density functional theory calculated results were found to be in good agreement with the experimental data available in the literature and help to explain some of the observed variation in these types of cyclization reactions with various substitutions. Our results also provide an explanation for why the rate constant for the carboxylate group substituted radical was found to be an order of magnitude smaller than the rate constant for those radicals with carboxylic acid and ethoxycarbonyl substitutions.  相似文献   

18.
Acceleration of organic reactions through aqueous solvent effects   总被引:1,自引:0,他引:1  
The parallels between organic reactions conducted with water as the solvent and reactions conducted under high pressure can be understood in light of theories of aqueous solvation and hydrophobic effects. Such parallels provide powerful tools for promoting reactions of nonpolar compounds.  相似文献   

19.
It is known experimentally that, in contrast to the case of amides, barriers to rotation about the conjugated C-N bonds of carbamates show very little solvent dependence. Calculations of the relative solvation energies of the equilibrium and transition state structures of methyl N,N-dimethylcarbamate (MDMC) and N, N-dimethylacetamide (DMA) were carried out using a continuum reaction field model in order to investigate the reason that bulk solvent polarity raises the barrier for DMA but leaves the barrier for MDMC unchanged. The results confirmed that MDMC is insensitive to bulk solvent polarity, probably as a result of the relatively small molecular dipole moment. Calculations of proton affinities and of the strength of association with a single water molecule were then performed in order to investigate why hydrogen-bond-donating solvents affect DMA but not MDMC. These calculations showed that MDMC is a less capable hydrogen-bond acceptor than DMA, and that the rotational barrier of MDMC does not increase in response to protonation or hydrogen-bonding nearly as much as the barrier of DMA does. Both of these factors contribute to making the rotational barrier of MDMC insensitive to solvent hydrogen-bond donor ability.  相似文献   

20.
The effect of solvent on solution or interfacial polycondensations was investigated in terms of selectivity and control of functional groups such as amine or hydroxyl groups toward polycondensation reactions. Solution polycondensation of a mixture of resorcinol (RL) and m-xylyenediamine (m-XD) with isophthaloyl chloride was affected by solvents to such extent as to change the course of the polycondensation reaction, and hexamethylenephosphoramide (HMPA) caused the formation of amide-rich polymer, while tetrahydrofuran (THF) was a solvent favoring formation of a polyamide ester with a regular structure. Polycondensation of 3,3′-dihydroxybenzidine (DHB) with isophthaloyl chloride yielded exclusively a linear polyamide in HMPA solution, while with aldehyde as a solvent polyester was obtained owing to the preservation of the amine group. Thus, it was found that the course of polycondensation reactions of monomers having different functional groups could be controlled by selection of a suitable solvent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号