首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aerial oxidation kinetics of hydroquinone in a freshly prepared developer solution at different temperatures and pHs has been studied. The activation parameters, Ea, ΔG# , ΔS# , ΔH# and enthalpy of formation of activated complex, ΔHfo(X# ), are determined. The large negative value of free energy of activation ΔG# proves that hydroquinone extremely tends to be oxidized by air at optimum temperature (20℃) and optimum pH (10.5) and converts to the activated complex semiquinone. It was also found that if the pH of the developer solution is increased from 9.3 to 10.5 the reaction rate will increase by a factor of 2.  相似文献   

2.
This work reports the results of a kinetic and mechanistic investigations of the addition reaction of triphenylphosphine to para‐naphtoquinone in 1,2‐dichloromethane as solvent. The order of reaction with respect to the reactants was determined using initial rate method, and the rate constant was obtained on the basis of pseudo‐first‐order method. Variable time method using Uv–Vis spectrophotometry (at 400 nm) was utilized for monitoring this addition reaction, for which the following Arrhenius equation was obtained: The resulting activation parameters Ea, ΔH#, ΔG#, and ΔS# at 300 K were 13.63, 14.42, 18.75 kcal mol?1, and ?14.54 cal mol?1K?1, respectively. The results suggest that the reaction is first order with respect to both triphenylphosphine and para‐naphthoquinone. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 37: 427–433, 2005  相似文献   

3.
The kinetics of the addition reaction of aniline to ethyl propiolate in dimethylsulfoxide (DMSO) as solvent was studied. Initial rate method was used to determine the order of the reaction with respect to the reactants, and pseudo‐first‐order method was used to calculate the rate constant. This reaction was monitored by UV–Vis spectrophotometer at 399 nm by the variable time method. On the basis of the experimental results, the Arrhenius equation for this reaction was obtained as log k = 6.07 ‐ (12.96/2.303 RT). The activation parameters, Ea, ΔH#, ΔG#, and ΔS# at 300 K were 12.96, 13.55, 23.31 kcal mol?1 and ?32.76 cal mol?1 K?1, respectively. The results revealed a first‐order reaction with respect to both aniline and ethyl propiolate. In addition, based on the experimental results and using also density functional theory (DFT) at B3LYP/6‐31G* level, a mechanism for this reaction was proposed. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 38: 144–151, 2006  相似文献   

4.
Kinetics of the addition reaction of triphenylphosphine to para‐benzoquinone in 1,2‐dichloroethane as solvent was studied. Initial rate method was used to determine the order of the reaction with respect to the reactants. Pseudo‐first‐order method was also used to calculate the rate constant. This reaction was monitored by UV‐vis spectrophotometry at 520 nm by variable time method. On the basis of the obtained results, the Arrhenius equation of this reaction was obtained: The activation parameters, Ea, ΔH#, ΔG#, and ΔS# at 300 K were 5.701, 6.294, 19.958 kcal mol?1 and ?45.853 cal mol?1 K?1, respectively. This reaction is first and second order with respect to triphenylphosphine and para‐benzoquinone, respectively. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36:472–479, 2004  相似文献   

5.
The kinetics of alkaline hydrolysis of 2‐chloro‐3,5‐dinitrobenzotrifluoride 1 and 1‐chloro‐2,4‐dinitrobenzene 2 were studied in various acetonitrile–water (AN–H2O) mixtures (10–90% w/w) at different temperatures. Thermodynamic parameters ΔH# and ΔS# show great variation, whereas ΔG# appears to vary little with the solvent composition presumably due to compensating variations. The results are discussed in terms of the solvent parameters such as preferential solvation, dielectric constant, polarity/polarizability, and hydrogen bond donor and acceptor parameters. It has been found that the factors controlling the reaction rates are the desolvation of OH?, the solvophobicity of the medium, and free water molecules in rich AN mixed solvent. The data showed that the solvatochromic parameters of (AN–H2O) mixed solvent are destroyed in the presence of excess OH?. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 453–463, 2010  相似文献   

6.
New data on enthalpy and entropy contributions to the energy barrier of β-pinene thermal isomerization were obtained. The rate of β-pinene conversion is higher in supercritical EtOH (P = 120 atm) than in the gas phase (P ≤ 1 atm, without solvent, or for inert carrier gas N2) at equal temperatures. The highest activation energy E Σ of total β-pinene conversion is also observed in reactions in the supercritical (sc) condition. Activation parameters ΔH Σ # , ΔS Σ # , and ΔG Σ # depend strongly on the reaction pressure. Thus, at P ≤ 1 atm (gas-phase reaction) the values of ΔS Σ # are negative, while at sc conditions at P = 120 atm is positive. The linear dependences lnk Σ0 ? E Σ and ΔS Σ # ? ΔS Σ # indicate an isokinetic relation (IKR) and enthalpy-entropy compensation effect (EEC). The isokinetic temperature was calculated (T iso = 605.5 ± 22.7 K). It was shown that elevation of temperature reduces the value of ΔG Σ # (T) upon sc thermolysis only, whereas in all gas-phase reactions ΔG Σ # (T) increases. At equal reaction temperatures, the greatest values of K eq # (T) proved to be typical for thermolysis in sc-EtOH. We hypothesize that the rate of total β-pinene conversion increases dramatically due to a considerable shift in equilibrium toward higher concentrations of activated complex y TS # . A detailed analysis of activation parameters shows that the IKR and EEC coincide, evidence of a common mechanism of β-pinene conversion observed under different reaction conditions, including thermolysis in sc-EtOH.  相似文献   

7.
The kinetic and mechanistic study of Ag(I)‐catalyzed chlorination of linezolid (LNZ) by free available chlorine (FAC) was investigated at environmentally relevant pH 4.0–9.0. Apparent second‐order rate constants decreased with an increase in pH of the reaction mixture. The apparent second‐order rate constant for uncatalyzed reaction, e.g., kapp = 8.15 dm3 mol−1 s−1 at pH 4.0 and kapp. = 0.076 dm3 mol−1 s−1 at pH 9.0 and 25 ± 0.2°C and for Ag(I) catalyzed reaction total apparent second‐order rate constant, e.g., kapp = 51.50 dm3 mol−1 s−1 at pH 4.0 and kapp. = 1.03 dm3 mol−1 s−1 at pH 9.0 and 25 ± 0.2°C. The Ag(I) catalyst accelerates the reaction of LNZ with FAC by 10‐fold. A mechanism involving electrophilic halogenation has been proposed based on the kinetic data and LC/ESI/MS spectra. The influence of temperature on the rate of reaction was studied; the rate constants were found to increase with an increase in temperature. The thermodynamic activation parameters Ea, ΔH#, ΔS#, and ΔG# were evaluated for the reaction and discussed. The influence of catalyst, initially added product, dielectric constant, and ionic strength on the rate of reaction was also investigated. The monochlorinated substituted product along with degraded one was formed by the reaction of LNZ with FAC.  相似文献   

8.
The kinetics of micellar catalyzed oxidation of oxalic acid [OA] by N-bromophthalimide was studied in the presence of perchloric acid at 308 K. The orders of reaction with respect to [Oxalic acid], [oxidant], and [H+] were found to be fractional, first and negative fractional order respectively. Cationic micelles of cetyltrimethylammonium bromide increased the reaction rate. The effect of phthalimide, mercuric acetate and inorganic salts, that is, [Cl?][Br?] has also been done. The rate reaction decreases with increasing dielectric constant of the medium. The results are treated quantitatively in terms of Piszkiewicz and Berezin models. The rate constant (Kobs), cooperatively index (n), binding constant (ks + ko), and corresponding activation parameters (Ea, ΔH#, ΔS#, and ΔG#) were determined. A suitable mechanism consistent with the experimental finding has been proposed.  相似文献   

9.
The kinetics of the anation reaction of cis-diaquo-bis-oxalatochromate(III) ion by DL-alanine has been studied spectrophotometrically in the pH range 3.8 to 7.3, where DL-alanine remains in zwitterionic form. A second-order rate law has been established. Reaction rates in three different ethanol-water mixtures were measured. In each solvent medium the anation rate is higher as compared to water exchange reaction at a particular temperature. The activation parameters (gDH# and ΔS#) in different ethanol-water mixtures were obtained from Eyring plots. ΔG#(ΔH#TΔS #) values were calculated in each solvent medium and compared with that of the isotopic water exchange process. A reaction mechanism involving theS N2 path has been suggested.  相似文献   

10.
The kinetics of alkaline hydrolysis of 2-chloroquinoxaline (QCl) with hydroxide ion was investigated spectrophotometrically at different percentages of aqueous–organic solvent mixtures with acetonitrile (10–60% v/v) and with dimethylesulphoxide (10–80%) over the temperature range from 25 to 45 °C. The reaction was performed under pseudo first order conditions with respect to 2-chloroquinoxaline (QCl). An increase in the percentage of organic solvent (v/v) has different effects on the reaction rate constants, presumably due to hydrogen bond donor and acceptor differences of the media and other solvatochromic parameters. The data were discussed in terms of the Kamelt-Taft parameter and E T(30). A nonlinear relation between the logarithm of the rate constant and reciprocal of the dielectric constant suggests the presence of selective solvation by the polar water molecules. Activation parameters ΔH #, ΔS # and ΔG # were determined and discussed.  相似文献   

11.
The redox reaction between dicyanobis(bipyridine)iron(III) and iodide ion follows first‐order kinetics in 10% (v/v) tertiary butyl alcohol‐water. The reaction was found first and zero order in iodide and dicyanobis(bipyridine)iron(III), respectively, at 0.06 M ionic strength and 293 ± 1 K. The thermodynamic parameters of activation such as EA (16.07 kJ mol?1), A (1 × 10?4 M s?1), ΔH# (13.6 kJ mol?1), ΔS# (?329.81 J K?1 mol?1), and ΔG# (90.1 kJ mol?1) were determined. The effect of the ionic strength on the rate constant leads to recognizing the stabilization or destabilization of the transition state complex that forms during the rate‐determining step of the reaction. The value of the zero‐order rate constant was decreased with increasing ionic strength that yielded a negative value of the slope in each binary and ternary solvent systems. This negative sign refers to the electron transfer between opposite charge carriers such as [FeIII(bpy)2(CN)2]+ and I? during the rate‐determining step. The destabilization of the transition state complex is surfaced by the increasing slope, that is, 5 < 10 < 15% (v/v) tertiary butyl alcohol‐water with a gradual decrease in the rate constant. However, its stability emerges by relatively small values of the slope in 17.5 < 25 ≤ 30% (v/v) tertiary butyl alcohol‐water and 8:2:90 < 6:4:90% (v/v) dioxane: tertiary butyl alcohol: water with reasonably fast rate of reaction.  相似文献   

12.
A La(III) complex, [LaIIICl2(NOR)2]Cl (2), containing norfloxacin (NOR) (1), a synthetic fluoroquinolone antibacterial agent, has been synthesized and characterized by elemental analysis, IR, UV–vis spectra and 1H NMR spectroscopy, and molar conductance measurements. The interaction between 2 and CT-DNA was investigated by steady-state absorption and fluorescence techniques in different pH media, and showed that 2 could bind to CT-DNA presumably via non-intercalative mode and the La(III) complex showed moderate ability to bind CT-DNA compared to other La(III) complexes. The binding site number n, and apparent binding constant KA, corresponding thermodynamic parameters ΔG#, ΔH#, ΔS# at different temperatures were calculated. The binding constant (KA) values are 0.23 ± 0.05, 0.56 ± 0.05, and 0.18 ± 0.08 × 105 L mol?1 for pH 4, 7, and 11, respectively. It was also found that the fluorescence quenching mechanism of CT-DNA by La(III) complex was a static quenching process.  相似文献   

13.
Molar conductance of lithium acetate, sodium acetate and potassium acetate were studied in aqueous 2-butanol solutions with an alcohol mass fraction (w2) of 0.70, 0.80 and 0.90 at 298.15, 303.15 and 308.15 K. The conductance data were analyzed with the Fuoss conductance-concentration equation to evaluate the limiting molar conductances (Λ0), association constants (KA,c) and cosphere diameter (R) for ion-pair formation. Gibbs energy (ΔG0), enthalpy (ΔH0) and entropy (ΔS0) for ion-association reaction were derived from the temperature dependence of KA,c. Activation energy for ionic movement (ΔH#) was derived from the temperature dependence of Λ0. Based on the composition dependence of Walden products (Λ0η0) and different thermodynamic properties (ΔG0H0, ΔS0 and ΔH#), the influence of the solvent composition on ion-association and solvation behavior of ions were discussed in terms of ion-solvent, ion-ion interactions and the structural changes in the mixed solvent media.  相似文献   

14.
15.
The kinetics of vitamin C by ferric chloride hexahydrate has been investigated in the aqueous ethanol solution of basic surfactant viz. octadecylamine (ODA) under pseudo-first order conditions. The critical micelle concentration (CMC) of surfactant was determined by surface tension measurement. The effect of pH (2.5–4.5) and temperature (15–35°C) in the presence and absence of surfactant were investigated. Activation parameters, ΔE a, ΔH #, ΔS #, ΔG , for the reaction were calculated by using Arrhenius and Eyring plot. Surface excess concentration (Γmax), minimum area per surfactant molecule (A min), average area occupied by each molecule of surfactant (a), surface pressure at the CMC (Πmax), Gibb’s energy of micellization (ΔG M°), Gibb’s energy of adsorption (ΔG ad°), were calculated. It was found that the reaction in the presence of surfactant showed faster oxidation rate than the aqueous ethanol solution. Reaction mechanism has been deduced in the presence and absence of surfactant.  相似文献   

16.
The electron donor–acceptor (EDA) interaction between 2,3-dicyano-1,4-naphthoquinone (DCNQ) and 3,4-dimethylaniline (3,4-DMA) is studied in chloroform, dichloromethane and 1:1 (v/v) mixture of chloroform and dichloromethane. The rate of formation of the product was measured as a function of time using UV–vis spectrophotometer. The formation constant (K) and molar extinction coefficient (?) values for the formation of EDA complex were evaluated in the temperature range of 20–35 °C. The pseudo-first-order rate constant (k1) and the second-order rate constant (k2) for the disappearance of EDA complex and for the formation of product were evaluated. The activation parameters (ΔH#, ΔS# and ΔG#) of the reaction were determined by temperature dependence of rate constants using the Arrhenius plots. The effect of relative permittivity of the medium on the reaction is discussed. The observed results indicate that formation of final product proceeds through initial formation of EDA complex as an intermediate. The product of the reaction was purified by column chromatography method and identified as 3-(N-3,4-dimethyl-phenylamino)-2-cyano-1,4-naphthoquinone by elemental analysis, IR and NMR spectroscopy. On the basis of kinetic, analytical and spectroscopic results, a plausible mechanism for the formation of EDA complex and its transformation into product is proposed.  相似文献   

17.
Ab initio calculations were carried out to understand the effect of electron donating groups (EDG) and electron withdrawing groups (EWG) at the C5 position of cytosine (Cyt) and saturated cytosine (H2Cyt) of the deamination reaction. Geometries of the reactants, transition states, intermediates, and products were fully optimized at the B3LYP/6-31G(d,p) level in the gas phase as this level of theory has been found to agree very well with G3 theories. Activation energies, enthalpies, and Gibbs energies of activation along with the thermodynamic properties (ΔE, ΔH, and ΔG) of each reaction were calculated. A plot of the Gibbs energies of activation (ΔG) for C5 substituted Cyt and H2Cyt against the Hammett σ-constants reveal a good linear relationship. In general, both EDG and EWG substituents at the C5 position in Cyt results in higher ΔG and lower σ values compared to those of H2Cyt deamination reactions. C5 alkyl substituents ( H,  CH3,  CH2CH3,  CH2CH2CH3) increase ΔG values for Cyt, while the same substituents decrease ΔG values for H2Cyt which is likely due to steric effects. However, the Hammett σ-constants were found to decrease at the C5 position of cytosine (Cyt) and saturated cytosine (H2Cyt) on the deamination reaction. Both ΔG and σ values decrease for the substituents Cl and Br in the Cyt reaction, while ΔG values increase and σ decrease in the H2Cyt reaction. This may be due to high polarizability of bromine which results in a greater stabilization of the transition state in the case of bromine compared to chlorine. Regardless of the substituent at C5, the positive charge on C4 is greater in the TS compared to the reactant complex for both the Cyt and H2Cyt. Moreover, as the charges on C4 in the TS increase compared to reactant, ΔG also increase for the C5 alkyl substituents ( H,  CH3,  CH2CH3,  CH2CH2CH3) in Cyt, while ΔG decrease in H2Cyt. In addition, analysis of the frontier MO energies for the transition state structures shows that there is a correlation between the energy of the HOMO–LUMO gap and activation energies.  相似文献   

18.
Kinetic studies of solvent structure effects and solute–solvent interactions on the solvolysis of [Co(NH3)5Cl]2+ complex ion have been investigated spectrophotometrically in binary aqueous mixtures. Three cosolvents were used (acetonitrile, dimethylsulfoxide, and urea) over a wide range of temperatures. Nonlinear plots were found for log(rate constant) against the reciprocal of the relative permitivity of the medium. The enthalpy and entropy of activation (ΔH# and ΔS#) exhibited extrema in the same composition region where the physical properties indicate sharp changes in the structure of the solvent, confirming that the solvent structure is an important factor in determining the solvolytic reactivity. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 416–422, 2008  相似文献   

19.
The kinetics of the oxidation of cysteine and captopril via octacyanomolybdate(V) and octacyanotungstate(V) in a buffered acidic media (pH range 2.20–4.80) have been studied spectrophotometrically. The rate law for the oxidation is: Rate = k [RSH] [Ox] [H+]−1, where RSH is cysteine or captopril and Ox is Cs3[Mo(CN)8] or Cs3[W(CN)8]. The activation parameters (Ea, ΔH#, ΔG#, ΔS#) for the oxidation of cysteine and captopril via Cs3[Mo(CN)8] or Cs3[W(CN)8] have been determined. The results indicate that Cs3[Mo(CN)8] is more reactive than Cs3[W(CN)8] as an oxidizing agent. Effects of pH, ionic strength, temperature, dielectric constant of the reaction medium and copper(II) ions on the oxidation rate have been studied. Mechanisms for the oxidation of cysteine to cystine and captopril to the corresponding disulfide have been proposed.  相似文献   

20.
[RuCl2(NCCH3)2(cod)], an alternative starting material to [RuCl2(cod)] n for the preparation of ruthenium(II) complexes, has been prepared from the polymer compound and isolated in yields up to 87% using a new work-up procedure. The compound has been obtained as a yellow solid without water of crystallization. The complexes [RuCl2(NCR)2(cod)] spontaneously transform into dimers [Ru2Cl(μ-Cl)3(cod)2(NCR)] (R?=?Me, Ph). 1H NMR kinetic experiments for these transformations evidenced first-order behavior. [RuCl2(NCPh)2(cod)] dimerizes slower by a factor of ten than [RuCl2(NCCH3)2(cod)]. The following activation parameters, ΔH #?=?114?±?3?kJ?mol?1 and ΔS #?=?66?±?9?J?K?1?mol?1 for R?=?CH3CN (ΔG #?=?94?±?5?kJ?mol?1, 298.15?K) and ΔH #?=?122?±?2?kJ?mol?1 and ΔS #?=?75?±?6?J?K?1?mol?1 for R?=?Ph (ΔG #?=?100?±?4?kJ?mol?1, 298.15?K), have been calculated from the first-order rate constants in the temperature range 294–323?K. The kinetic parameters are in agreement with a two-step mechanism with dissociation of acetonitrile as the rate-determining step. The molecular structures of [Ru2Cl(μ-Cl)3(cod)2(NCR)] (R?=?Me, Ph) have been determined by X-ray diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号