首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite fundamental importance, the experimental characterization of the hydrogen bond network, particularly in multicomponent protic solutions, remains a challenge. Although recent work has experimentally validated that the oxygen K-edge X-ray absorption spectra is sensitive to local hydrogen bond patterns in pure water and aqueous alcohol solutions, the generality of this observation is unknown—as is the sensitivity to the electronic structure of the alcohol cosolvent. In this work, we investigate the electronic structure of water solvated alcohol model geometries using energy specific time-dependent density functional theory to calculate oxygen K-edge X-ray excitations. We find that the geometry of dangling hydrogen bonds in pure water is the main contributor to the pre-edge feature seen in the X-ray absorption spectra, agreeing with previous experimental and theoretical work. We then extend this result to solvated alcohol systems and observe a similar phenomenon, yet importantly, the increase of electron donation from alkyl chains to the alcohol OH group directly correlates to the strength of the core excitation on the dangling hydrogen bond model geometry. This trend arises from a stronger transition dipole moment due to electron localization on the OH group.  相似文献   

2.
We propose a method for calculating the Gibbs energies of hydrogen bonding of solutes with associated solvents via the thermodynamic analysis of experimental values of solvation Gibbs energies. The method is applied to solutions of different proton acceptors in methanol. It is shown that the contribution of hydrogen bonding processes to the solvation Gibbs energy in methanol is in most cases very different in magnitude from the formation Gibbs energy of equimolar complexes of the solute and methanol. We demonstrate the need to include the contributions from solvophobic effects in investigating intermolecular interactions in associated solvents by means of thermodynamic data.  相似文献   

3.
Solubility of valnemulin hydrogen fumarate in five pure solvents was determined within temperature range of (278.15 to 323.15) K by a gravimetric method. The results show that the solubility of valnemulin hydrogen fumarate in tested pure solvents increases with the increasing temperature. The solubility values were correlated by the Wilson model, NRTL model and UNIQUAC model. The UNIQUAC volume parameter, area parameter, and Wilson liquid molar volume parameter of valnemulin hydrogen fumarate were estimated by the group contribution method. It was found that the correlated results are in good agreement with the experimental results. Furthermore, the mixing thermodynamic properties of valnemulin hydrogen fumarate in solutions, including the mixing Gibbs energy, the mixing enthalpy and entropy, were determined by using the Wilson model and the experimental solubility results.  相似文献   

4.
NMR and IR spectra are used to show that alcoholic solutions of this free radical have hydrogen bonds from the oxygen of the NO group to the OH of the alcohol. The proton T1 and T2 for the solvent give an estimate of the constant for the hyperfine interaction between the unpaired electron and the OH proton: A/h==104 cps. The dipole-dipole interaction gives rise to the main contribution to the width of the OH lines for the bound molecules. The energy of the hydrogen bond is evaluated from the temperature shift in the OH line.  相似文献   

5.
Nagata, I., 1985. On the thermodynamics of alcohol solutions. Phase equilibria of binary and ternary mixtures containing any number of alcohols. Fluid Phase Equilibria, 19: 153–174.Binary vapor—liquid and liquid—liquid equilibrium data for alcohol solutions includin one or two alcohols are correlated with the UNIQUAC associated solution theory (Nagata and Kawamura). The theory uses pure liquid association constants determined by the method of Brandani and a single value of the enthalpy of the hydrogen bond equal to ?23.2 kJ mol ?1 for pure alcohols. For alcohol-active nonassociating component mixtures and alcohol—alcohol mixtures the theory involves additional solvation constants. The theory is extended to contain ternary mixtures with any number of alcohols. Ternary predictions of vapor—liquid and liquid—liquid equilibria are performed using only binary parameters. Good agreement is obtained between calculated and experimental results for many representative mixtures.  相似文献   

6.
The effect of substitution, hybridization, and solvent on the properties of the C...HO single-electron hydrogen bond has been investigated with quantum chemical calculations. Methyl radical, ethyl radical, and vinyl radical are used as the proton acceptors and are paired with water, methanol, HOCl, and vinyl alcohol. Halogenation (Cl) of the proton donor strengthens this type of hydrogen bond. The methyl group in the proton donor and proton acceptor plays a different role in the formation of the C...HO single-electron hydrogen bond. The former is electron-withdrawing, and the latter is electron-donating, both making a constructive contribution to the enhancement of the interaction. The contribution of the methyl group in the proton acceptor is larger than that in the proton donor. The increase of acidity of the proton is helpful to form a single-electron hydrogen bond. As the proton acceptor varies from the methyl radical to the vinyl radical, the interaction strength also increases. The solvent has an enhancing influence on the strength of the C...HO single-electron hydrogen bond. These factors affect the C...HO single-electron hydrogen bond in a similar way that they do other types of hydrogen bonds.  相似文献   

7.
The high-frequency dynamics of (HF)(x)(H(2)O)(1-x) solutions has been investigated by inelastic x-ray scattering. The measurements have been performed as a function of the concentration in the range x = 0.20-0.73 at fixed temperature T = 283 K. The results have been compared with similar data in pure water (x = 0) and pure hydrogen fluoride (x = 1). A viscoelastic analysis of the data highlights the presence of a relaxation process characterized by a relaxation time and a strength directly related to the presence of a hydrogen-bond network in the system. The comparison with the data on water and hydrogen fluoride shows that the structural relaxation time continuously decreases at increasing concentration of hydrogen fluoride passing from the value for water to the one for hydrogen fluoride tau(alphaHF), which is three times smaller. This is the consequence of a gradual decreasing number of constraints of the hydrogen-bond networks in passing from one liquid to the other.  相似文献   

8.
One of two fundamental types of solute–solvent intermolecular interactions are the specific interactions, such as hydrogen bonding complexation between solute and solvent. The Gibbs energy of specific interactions is an important quantity that determines rate and equilibrium constants in solutions, but it is difficult to obtain by direct measurement. We proposed equations allowing to determine the contribution of specific interactions to the Gibbs energy of solvation in nonelectrolyte solutions. Applying it for the case of proton donating solutes with one acidic hydrogen atom dissolved in basic solvents, we obtained the values of the Gibbs energies of 1:1 complexation in pure base. These values have been compared with the Gibbs energies of 1:1 complexation in tetrachloromethane. Most of the hydrogen bonds are found to have the same energy in pure base and in CCl4, however, some weakly bound complexes seem to become even more weakened in pure base medium. Suggested method is applicable in a general situation when multiple associates of different stoichiometry and structure are formed.  相似文献   

9.
The mechanism for tyrosyl radical generation in the [Re(P-Y)(phen)(CO)3]PF6 complex is investigated with a multistate continuum theory for proton-coupled electron transfer (PCET) reactions. Both water and the phosphate buffer are considered as potential proton acceptors. The calculations indicate that the model in which the proton acceptor is the phosphate buffer species HPO(4)2- can successfully reproduce the experimentally observed pH dependence of the overall rate and H/D kinetic isotope effect, whereas the model in which the proton acceptor is water is not physically reasonable for this system. The phosphate buffer species HPO4(2-) is favored over water as the proton acceptor in part because the proton donor-acceptor distance is approximately 0.2 A smaller for the phosphate acceptor due to its negative charge. The physical quantities impacting the overall rate constant, including the reorganization energies, reaction free energies, activation free energies, and vibronic couplings for the various pairs of reactant/product vibronic states, are analyzed for both hydrogen and deuterium transfer. The dominant contribution to the rate arises from nonadiabatic transitions between the ground reactant vibronic state and the third product vibronic state for hydrogen transfer and the fourth product vibronic state for deuterium transfer. These contributions dominate over contributions from lower product states because of the larger vibronic coupling, which arises from the greater overlap between the reactant and product vibrational wave functions. These calculations provide insight into the fundamental mechanism of tyrosyl radical generation, which plays an important role in a wide range of biologically important processes.  相似文献   

10.
设计并合成了9个可形成三中心氢键和6个可形成二中心氢键的N-芳基芳酰胺模型化合物, 基于它们在氯仿和二甲基亚砜(DMSO)中的一维核磁共振波谱, 系统地分析了羰基对βH和γH的去屏蔽效应. 将Δ(δβH)和Δ(δγH)的值结合在一起, 分析了三中心氢键对芳酰胺分子的构象限制效果, 发现N-(2-氟苯基)-2-氟苯甲酰胺、 N-(2-甲氧基苯基)-2-氟苯甲酰胺和N-(2-氟苯基)-2-甲氧基苯甲酰胺这3个N-芳基芳酰胺在酰胺基团的左右两侧都能展现出很好的构象控制效果, 因此认为这3种结构单元在构建折叠体方面具有更大的潜力. 此外, 本文还发现, 当NH与第二个氢键受体形成氢键时, 其和第一个氢键受体之间的氢键就被削弱了, 即在芳酰胺形成三中心氢键时, 2个氢键受体争相与NH形成氢键并取得了某种平衡.  相似文献   

11.
The influence of π-stacking interactions between guanine (G) and the side chain of tyrosine (Tyr) on the N7 and O6 proton affinities of guanine and on the capability of these sites to act as hydrogen bond acceptors is analyzed at the B3LYP-D, M05-2X and MP2 levels of theory. With all methods, results from full geometry optimizations indicate that stacking interactions increase the N7 and O6 proton affinities by about 5–6 kcal mol?1, the increase being slightly larger for N7. Consistently with these results, hydrogen bond distances between guanine and one water molecule decrease in the stacked system. Moreover, interaction energy between H2O and (G-Tyr) is found to be 2–3 kcal mol?1 larger than in G···H2O. This strengthening arises from the additional Tyr–H2O stabilizing interactions and from a cooperative interplay between stacking and hydrogen bond forces.  相似文献   

12.
Quinones play a key role as primary electron acceptors in natural photosynthesis, and their reduction is known to be facilitated by hydrogen-bond donors or protonation. In this study, the influence of hydrogen-bond donating solvents on the thermodynamics and kinetics of intramolecular electron transfer between Ru(bpy)(3)(2+) (bpy = 2,2'-bipyridine) and 9,10-anthraquinone redox partners linked together via one up to three p-xylene units was investigated. Addition of relatively small amounts of hexafluoroisopropanol to dichloromethane solutions of these rigid rodlike donor-bridge-acceptor molecules is found to accelerate intramolecular Ru(bpy)(3)(2+)-to-anthraquinone electron transfer substantially because anthraquinone reduction occurs more easily in the presence of the strong hydrogen-bond donor. Similarly, the rates for intramolecular electron transfer are significantly higher in acetonitrile/water mixtures than in dry acetonitrile. In dichloromethane, an increase in the association constant between hexafluoroisopropanol and anthraquinone by more than 1 order of magnitude following quinone reduction points to a significant strengthening of the hydrogen bonds between the hydroxyl group of hexafluoroisopropanol and the anthraquinone carbonyl functions. The photoinduced intramolecular long-range electron transfer process thus appears to be followed by proton motion; hence the overall photoinduced reaction may be considered a variant of stepwise proton-coupled electron transfer (PCET) in which substantial proton density (rather than a full proton) is transferred after the electron transfer has occurred.  相似文献   

13.
The ground-state proton transfer (GSPT) of 7-hydroxyquinoline along a hydrogen-bonded alcohol chain has been investigated in n-alkanes using time-resolved transient-absorption spectroscopy with variation of alcohols, media, isotopes, and temperatures. As a 7-hydroxyquinoline molecule associates with two alcohol molecules via hydrogen bonding to form a cyclic complex in a nonpolar aprotic medium, the intrinsic GSPT dynamics of the cyclic complex in a n-alkane has been observed directly without being interfered with by solvent association to form the cyclic complex. GSPT occurs concertedly without accumulating any reaction intermediate and yet asymmetrically with a rate-determining tunneling process. Both the rate constant and the kinetic isotope effect of GSPT increase rapidly with the proton-donating ability of the alcohol but decrease greatly with the molecular size of the alcohol. The reorganization of the hydrogen-bond bridge to form an optimal precursor configuration for efficient proton tunneling takes place prior to intrinsic GSPT, and configurational optimization becomes more important as the molecular size of the alcohol increases. Consequently, the larger contribution of configurational optimization to GSPT leads to the weaker asymmetric character of GSPT.  相似文献   

14.
We analyze the interplay between proton transfer in the hydrogen-bond bridge, O···H···O, and lattice dynamics in the model system tetraacetylethane (TAE) (CH(3)CO)(2)CH═CH(COCH(3))(2) using density functional theory. Lattice dynamics calculations and molecular dynamics simulations are validated against neutron scattering data. Hindrance to the cooperative reorientation of neighboring methyl groups at low temperatures gives a preferred O atom for the bridging proton. The amplitude of methyl torsions becomes larger with increasing temperature, so that the free-energy minimum for the proton becomes flat over 0.2 ?. For the isolated molecule, however, we show an almost temperature-independent symmetric double-well potential persists. This difference arises from the much higher barriers to methyl torsion in the crystal that make the region of torsional phase space that is most crucial for symmetrization poorly accessible. Consequently, the proton-transfer potential remains asymmetric though flat at the base, even at room temperature in the solid.  相似文献   

15.
均苯四甲酸与对羟基吡啶超分子聚合物的制备   总被引:1,自引:0,他引:1  
超分子聚合物(supramolecular polymer)是指单体单元间依靠可逆和高度取向的非共价作用力结合的、在溶液或本体中表现出聚合物特性的一类特殊聚合物[1].其中,氢键结合超分子聚合物因氢键的高度取向性及丰富的结合形式而具有特殊结构与性能,已成为近期关注的热点[2~4].文献中报道的氢键结合超分子聚合物主要有多重氢键结合和基于羧基与吡啶基的氢键结合(其键能可达45kJ·mol-1[5])两类,它们均可表现出和传统聚合物诸多类似的性质,诸如高的溶液粘度、形成凝胶、具有弹性等,同时其结构和性能又随温度等环境条件的变化而发生可逆变化,使得这类…  相似文献   

16.
The structural and energetic properties of solutions containing water, urea, and trimethylamine-N-oxide (TMAO) are examined using molecular dynamics simulations. Such systems are of interest mainly because TMAO acts to counter the protein denaturing effect of urea. Even at relatively high concentration, TMAO is found to fit well into the urea-water structure. The underlying solution structure is influenced by TMAO, but these perturbations tend to be modest. The TMAO-water and TMAO-urea interaction energies make an important contribution to the total energy in solutions where counter-denaturing effects are expected. TMAO-water and TMAO-urea hydrogen bonds have the largest hydrogen-bond energies in the system. Additionally, TMAO cannot hydrogen bond with itself, and hence it interacts strongly with water and urea. These observations suggest that the mechanism of TMAO counter denaturation is simply that water and urea prefer to solvate TMAO rather than the protein, hence inhibiting its unfolding.  相似文献   

17.
Ionic bond or hydrogen bridge? Br?nsted proton transfer to nitrogen acceptors in organic crystals causes strong N1s core-level binding energy shifts. A study of 15 organic cocrystal and salt systems shows that standard X-ray photoelectron spectroscopy (XPS) can be used as a complementary method to X-ray crystallography for distinguishing proton transfer from H-bonding in organic condensed matter.  相似文献   

18.
Hydrogen bonding interactions of organic radicals are systematically studied using diverse ab initio and density functional theory (DFT) methods. It is found that open-shell hydrogen bonds with radical proton donors are more difficult to model than those with radical proton acceptors. The DFT methods perform significantly worse than the unrestricted second order Möller-Plesset perturbation (UMP2) method in both geometry optimization and interaction energy calculations for the open-shell hydrogen bonds. The UB3LYP method seriously underestimates the donor-acceptor distances and overestimates interaction energies for the open-shell hydrogen bonds with radical proton donors. Nevertheless, use of the UBH&HLYP functional to study the open-shell hydrogen bonds is still acceptable. Furthermore, it is necessary to use sufficiently flexible basis sets, such as 6-311++G(2df,2p), to get reliable interaction energies for the open-shell hydrogen bonds. The open-shell proton donors are stronger Lewis acids than the corresponding closed-shell proton donors. The open-shell proton acceptors are weaker Lewis bases than the corresponding closed-shell proton acceptors.  相似文献   

19.
20.
Bond-order analysis is introduced to facilitate the study of cooperative many-molecule effects on proton mobility in liquid water, as simulated using the multistate empirical valence-bond methodology. We calculate the temperature dependence for proton mobility and the total effective bond orders in the first two solvation shells surrounding the H(5)O(2) (+) proton-transferring complex. We find that proton-hopping between adjacent water molecules proceeds via this intermediate, but couples to hydrogen-bond dynamics in larger water clusters than previously anticipated. A two-color classification of these hydrogen bonds leads to an extended mechanism for proton mobility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号