首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Lysocin E, a macrocyclic peptide, exhibits potent antibacterial activity against methicillin‐resistant Staphylococcus aureus (MRSA) through a novel mechanism. The first total synthesis of lysocin E was achieved by applying a full solid‐phase strategy. The developed approach also provides rapid access to the enantiomeric, epimeric, and N‐demethylated analogues of lysocin E. Significantly, the antibacterial activity of the unnatural enantiomer was comparable to that of the natural isomer, suggesting the absence of chiral recognition in its mode of action.  相似文献   

2.
We investigated the antibacterial activity of some new macromolecules such as bis‐pyrazoline, bis‐pyrazole, bis‐pyrimidines prepared from the reaction of bis‐chalcone with thiosemicarbazide/phenyl hydrazine/guanidine hydrochloride/thiourea. All the macromolecules have been characterized by IR, 1H NMR, 13C NMR, mass and elemental analyses. The antibacterial activity of these compounds was first tested in vitro by the disc diffusion assay against two Gram‐positive and two Gram‐negative bacteria, and then the minimum inhibitory concentration was determined with the reference to standard drug chloramphenicol. The results showed that pyrazoline derivative showed better antibacterial activity on S. typhimurium and E. coli than the reference drug chloramphenicol.  相似文献   

3.
New water‐soluble methacrylate polymers with pendant quaternary ammonium (QA) groups were synthesized and used as antibacterial materials. The polymers with pendant QA groups were obtained by the reaction of the alkyl halide groups of a previously synthesized functional methacrylate homopolymer with various tertiary alkyl amines containing 12‐, 14‐, or 16‐carbon alkyl chains. The structures of the functional polymer and the polymers with QA groups were confirmed with Fourier transform infrared and 1H and 13C NMR. The degree of conversion of alkyl halides to QA sites in each polymer was determined by 1H NMR to be over 90% in all cases. The number‐average molecular weight and polydispersity of the functional polymer were determined by size exclusion chromatography to be 32,500 g/mol and 2.25, respectively. All polymers were thermally stable up to 180 °C according to thermogravimetric analysis. The antibacterial activities of the polymers with pendant QA groups against Staphylococcus aureus and Escherichia coli were determined with broth‐dilution and spread‐plate methods. All the polymers showed excellent antibacterial activities in the range of 32–256 μg/mL. The antibacterial activity against S. aureus increased with an increase in the alkyl chain length for the ammonium groups, whereas the antibacterial activity against E. coli decreased with increasing alkyl chain length. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5965–5973, 2006  相似文献   

4.
The total and semi‐synthesis of 13 new macrolactones derived from thuggacin, which is a secondary metabolite from the myxobacterium Sorangium cellulosum, are reported. The thuggacins have attracted much attention due to their strong antibacterial activity, particularly towards Mycobacterium tuberculosis. This study focuses on 1) thuggacin derivatives that cannot equilibrate by transacylation between the three natural thuggacins A–C, 2) the roles of the thiazole ring, and 3) the hexyl side chain at C2. Semi‐synthetic O‐methylation at C17 suppressed the transacylations without a substantial loss of antibacterial activity. Exchanging the C17–C25 side chain for simplified hydrophobic chains led to complete loss of antibacterial activity. Exchange of the thiazole by an oxazole ring or removal of the hexyl side chain at C2 had no substantial effect on the biological properties.  相似文献   

5.
Lysocin E ( 1 ) is a structurally complex 37‐membered depsipeptide comprising 12 amino‐acid residues with an N‐methylated amide and an ester linkage. Compound 1 binds to menaquinone (MK) in the bacterial membrane to exert its potent bactericidal activity. To decipher the biologically important functionalities within this unique antibiotic, we performed a comprehensive structure‐activity relationship (SAR) study by systematically changing the side‐chain structures of l ‐Thr‐1, d ‐Arg‐2, N‐Me‐d ‐Phe‐5, d ‐Arg‐7, l ‐Glu‐8, and d ‐Trp‐10. First, we achieved total synthesis of the 14 new side‐chain analogues of 1 by employing a solid‐phase strategy. We then evaluated the MK‐dependent liposomal disruption and antimicrobial activity against Staphylococcus aureus by 1 and its analogues. Correlating data between the liposome and bacteria experiments revealed that membrane lysis was mainly responsible for the antibacterial functions. Altering the cationic guanidine moiety of d ‐Arg‐2/7 to a neutral amide, and the C7‐acyl group of l ‐Thr‐1 to the C2 or C11 counterpart decreased the antimicrobial activities four‐ or eight‐fold. More drastically, chemical mutation of d ‐Trp‐10 to d ‐Ala‐10 totally abolished the bioactivities. These important findings led us to propose the biological roles of the side‐chain functionalities.  相似文献   

6.
Considerable interests have been attracted by isosteviol and its derivatives because of their large variety of bioactivities. In this project, a series of novel 15‐ and 16‐substituted isosteviol derivatives were stereoselectively prepared by means of functional interconversions in ring D of the tetracyclic diterpene isosteviol. All compounds synthesized were characterized by analysis of NMR, IR, HR‐MS data, and the configurations of 33 and 37 were confirmed by X‐ray crystallographic analysis. The antibacterial activities in vitro of these isosteviol derivatives were investigated; the synthetic compounds were more active against Gram‐positive than Gram‐negative bacteria, and were especially active against Bacillus subtilis. Among them, compound 27 (MIC=1.56 μg/ml) exhibited the highest antibacterial activity and thus may be exploitable as a lead compound for the development of potent antibacterial agents.  相似文献   

7.
A new, simple Cu2+ nano‐structure Schiff base complex in methanol medium has been synthesized by the ultrasonic method. Structure of the compound was confirmed by FT‐IR, GC‐Mass and other spectroscopic techniques. The copper oxide (CuO) was achieved from the copper nano‐structure Schiff base complex as the raw material after calcination for 3 hr at 600 °C. According to results Cu2+ gives a complex with mole ratio 1:2 of metal to ligand (ML2) with Schiff base which a distorted square planer is the most probable geometry for it. The calculations results from XRD patterns propose the nano‐sized complexes. The SEM images show morphology of both the copper complex and the CuO powder were plate‐like. The metal chelates of Cu2+ in two states of bulk and nano have been screened for their in vitro antibacterial activity against four bacteria, gram‐positive (Staphylococcus aureus) and gram‐negative (Escherichia coli) and three strains of fungus (Aspergillus flavus). The nano metal chelates were shown to possess more antibacterial activity than the bulk chelate. Finally, the empirical parameters of Schiff base compounds showed a good agreement with theoretical ones.  相似文献   

8.
In this study, a facile, efficient, and surfactant‐free method to synthesize silica nanosphere‐supported ultrafine silver nanoparticles (AgNPs) (~2.5 nm) was developed, and their antibacterial effects were investigated. In the synthesis process, the hydrolysis of 3‐mercaptopropyltrimethoxysilane was adopted to provide thiol groups and in situ reduce Ag+ to Ag0 for ultrafine AgNPs formation on the surface of the silica nanosphere. Electron microscopy characterization of the complex formed revealed that the ultrafine AgNPs were not agglomerated and grow without any surfactants because there were no excess electrons transported from the shell to reduce the silver ions to silver atoms. The antibacterial effects of the supported ultrafine AgNPs with the surfactant‐free surface were evaluated against the Escherichia coli even at very low dosage. After incubation with 20 μg/mL silica‐supported AgNPs up to 120 min, 99.7% of the E. coli were inactivated, according to the bacterial viability measured by flow cytometry.  相似文献   

9.
In view of developing novel bioactive compounds, a series of 2‐(5‐[2‐methyl‐6‐arylpyridin‐3‐yl]‐1,3,4‐oxadiazol‐2‐ylthio)‐1‐arylethanones (6a–n) were designed and synthesized in good yield. Novel compounds were evaluated for their antibacterial and anti‐inflammatory activities. All synthesized compounds were screened for their antibacterial activity against Staphylococcus aureus, Bascillus subtilis, Eschericia coli, and Pseudomonas aeruginosa strains. Compounds 6a , 6b , 6c , 6h , and 6i displayed the highest antibacterial activity with minimal inhibitory concentration (MIC) values ranging from 6.25–12.5 μg/mL in comparison with the standard Ciprofloxacin. The results of anti‐inflammatory activity of carrageenan‐induced footpad edema assay indicated that tested compounds exhibited remarkable anti‐inflammatory activity with percentage of inhibition of 63.9–70.1% (potency 96.8–106.20% of indomethacin activity) after 3 hr. Particularly, 6c – e and 6j – l were found to be excellent inhibitors of inflammation, with potential higher than that of the standard, Indomethacin.  相似文献   

10.
In connection with our studies on antibacterial active compounds in the class of new oxazolidinones against Gram‐positive (Staphylococcus aureus) and Gram‐negative (Escherichia coli) strains, some molecular modifications were attempted. In this study, molecular modifications of 4‐aminomethyloxazolidin‐2‐ones ( 3a ) to the corresponding 4‐acylaminomethyloxazolidin‐2‐one derivatives ( 3c–d ) and preparations of the represented twin‐drug type molecules ( 10–14 ) were investigated. Some additional 4‐dialkylaminomethyloxazolidin‐2‐ones ( 2 ) were also synthesized. The synthesized compounds were evaluated for antibacterial activity with Gram‐positive (S. aureus) and Gram‐negative (E. coli) strains.  相似文献   

11.
Metal carboxylate compounds with nitrogen‐ and/or oxygen‐donor ligands with various carboxylate coordination modes, monodentate, bidentate and bridging bidentate, have been shown to be important from biological and chemical aspects. Five zinc ion binary compounds, diaqua‐bis‐(2‐((E )‐5‐fluoro‐2‐methyl‐1‐(4‐(methylsulfinyl)benzylidene)‐1H –inden‐3‐yl)acetato)zinc(II) ( 1 ), aqua‐bis‐(2‐((E )‐5‐fluoro‐2‐methyl‐1‐(4‐(methylsulfinyl)benzylidene)‐1H –inden‐3‐yl)acetato)pyridin‐2‐aminezinc(II) ( 2 ), (2‐((E )‐5‐fluoro‐2‐methyl‐1‐(4‐(methylsulfinyl)benzylidene)‐1H –inden‐3‐yl)acetato) pyridin‐2‐ylmethanaminezinc(II) (2‐((E )‐5‐fluoro‐2‐methyl‐1‐(4‐(methylsulfinyl)benzylidene)‐1H –inden‐3‐yl)acetate) ( 3 ), bis‐(2‐((E )‐5‐fluoro‐2‐methyl‐1‐(4‐(methylsulfinyl)benzylidene)‐1H –inden‐3‐yl)acetato)‐1,10‐phenanthrolinezinc(II) ( 4 ) and bis‐(2‐((E )‐5‐fluoro‐2‐methyl‐1‐(4‐(methylsulfinyl)benzylidene)‐1H –inden‐3‐yl)acetato)‐1,10‐phenanthrolinezinc(II) ( 5 ), have been prepared and fully characterized. In addition, the complexes were evaluated for their antibacterial activity using the in vitro agar diffusion method against two Gram‐positive (Staphylococcus epidermidis , Staphylococcus aureus ) and two Gram‐negative (Bordetella , Escherichia coli ) bacteria and yeast species (Saccharomyces and Candida ). Complex 5 showed reasonable activity against yeast. All compounds showed greater antibacterial activity against Gram‐positive than Gram‐negative bacteria. Results indicated that the efficiency of complex 5 in preventing the formation of β‐hematin was 67.6%. The efficiency of chloroquine as a standard drug was reported as 93%. Furthermore, the phosphatase activity of the Zn(II) complexes was studied and results indicated an effect of the zinc complexes on phosphatase activity.  相似文献   

12.
A novel series of 1,4‐disubstituted‐1,2,3‐triazole derivatives 3a – l and 5a – i were one‐pot synthesized via CuAAC‐alkyne click chemistry and evaluated for their antibacterial activity against four organisms and screened for their anticancer activity against human colon cancer cell line HT‐29 and human lung cancer cell line HTB‐29. These hybrid molecules structure elucidation has been performed by IR, 1H‐NMR, 13C‐NMR, and mass spectral analysis. Synthesized nonsteroidal anti‐inflammatory drugs‐triazoles evaluated for their antibacterial activities against bacterial microorganisms Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, and Klebsiella pneumonia. Final compounds 3i , 3c , and 5b showed magnificent broad spectrum activity against P. aeruginosa, K. pneumonia, E. coli, and S. aureus with zone of inhibition values of 20, 15, 17, and 16 mm, respectively. Among the series of compound, 3j showed the best antibacterial activity against all the strains. Further, the compounds 3i and 5a were more cytotoxic than cisplatin against all tested two human cancer cell lines, with 50.8%, and 52.3% and 73.4% and 75.3% of growth, respectively. The synthesized compounds were tested for kinase inhibitory activity against glycogen synthase kinase‐3 protein kinases, in addition, for cytotoxic activity against two different human cancer cell lines.  相似文献   

13.
A series of novel 4″‐methyl‐2,2″‐diaryl‐4,2′:4′,5″‐terthiazole ( 8a‐p ) derivatives has been synthesized and screened for antibacterial activity against four pathogenic bacteria, Escherichia coli, Pseudomonas flurescence, Staphylococcus aureus, and Bacillus subtilis. Among them, compounds 8a and 8j exhibited excellent antibacterial activity with minimum inhibitory concentration range of 1.0 to 5.3 μg/mL and compounds 8m and 8p exhibited moderate to good antibacterial activity with minimum inhibitory concentration range of 16.9 to 29.7 μg/mL against all tested strains. All the synthesized compounds were screened for their in vitro antifungal activity against Cocinida candida. Most of the compounds reported moderate antifungal activity. This study provides valuable directions to our ongoing endeavor of rationally designing more potent antimicrobial agent.  相似文献   

14.
Enduring the novel effective antimicrobial agents search, N‐(phenyl, benzyl, hetaryl)‐2‐([1,2,4]triazolo[1,5‐c ]quinazolin‐2‐ylthio)acetamides were synthesized, evaluated for structure (LC‐MS, IR, 1H‐NMR spectra and elemental analysis), and investigated for antibacterial activity against Staphylococcus aureus , Enterococcus faecalis , Enterobacter aerogenes , Cronobacter sakazaki , Pseudomonas aeruginosa , Escherichia coli , and Klebsiella pneumonia , and antifungal – against Candida albicans . N‐(4‐Fluorophenyl)‐2‐([1,2,4]triazolo[1,5‐c ]quinazolin‐2‐ylthio)acetamide 3e had the best minimum inhibition zones against S . aureus and E . faecalis and 3‐{[([1,2,4]triazolo[1,5‐c ]quinazolin‐2‐ylthio)acetyl]amino}benzoic acid 3k – against E . coli , still in lower concentration, than references. By the means of in silico molecular docking into the active sites of E . faecalis dihydrofolate reductase and Enterobacter cloacae MyrA, the possible activity mechanism was suggested. The quantitative structure–activity relationship model for antimicrobial activity prediction was calculated.  相似文献   

15.
用微量热研究一系列新型吡啶酰胺希夫碱对大肠杆菌的抑制作用, 不同的吡啶酰胺希夫碱衍生物对大肠杆菌生长的抑制作用不同. 通过热动力学模型计算得到生长速率常数(k)和抑制率(I), 我们获得了吡啶酰胺希夫碱衍生物的抗菌作用效果. 通过药物作用于细菌处于生长对数期的实验发现, 有两种化合物(F和G)对大肠杆菌生长有非常好的抑制作用, 他们的半抑制浓度(IC50)分别是0. 106 和0. 113 g/L, 但是药物对大肠杆菌的无氧发酵过程抑制作用比较差. 通过进一步分析药物结构与药物半抑制浓度, 我们发现: 希夫碱衍生物的亲水性对其抗菌活性有很大的影响, 这主要是由细菌的细胞膜结构不同所致. 对希夫碱及其碱衍物的结构与抗菌活性关系进行了初步探讨, 它们对大肠杆菌的抗菌活性顺序为: F>G>C>D>E>B>A.  相似文献   

16.
In attempt to search for more potent antimicrobial agents, a series of 7‐nitro‐1‐(piperidin‐4‐yl)‐4,5‐dihydro‐[1,2,4]triazolo[4,3‐a]quinoline‐derived sulphonamides were synthesized. Their structures were established by elemental analyses, IR, and NMR (1H and 13C) spectral data. The antibacterial activity of the obtained compounds was investigated against different Gram‐negative (Escherichia coli and Pseudomonas aeruginosa) and Gram‐positive (Bacillus subtilis and Staphylococcus aureus) bacteria and antifungal activity against two fungal strains (Aspergillus niger and Aspergillus clavatus) using disk diffusion method at various concentrations (20, 40, 60, and 80 μg/mL). The study reveals that most of the title compounds showed significant antibacterial and fungal activity when compared with their respective standards streptomycin and griseofulvin.  相似文献   

17.
Organometallic macromolecules such as ferrocenyl bis‐pyrazoline ( 2 , 3 ) and bis‐pyrimidine ( 4 , 5 ) derivatives were synthesized by reacting ferrocenyl bis‐chalcone 1 with thiosemicarbazide/phenylhydrazine/guanidine hydrochloride/thiourea, respectively, under microwave irradiation. Ferrocenyl bis‐chalcone 1 was synthesized by reacting acetyl ferrocene with terephthalaldehyde. Synthesized compounds were characterized by using IR, 1H NMR, 13C NMR, EI‐MS, and elemental analysis. In vitro antibacterial activity against two Gram‐negative and two Gram‐positive bacteria was determined by the disc diffusion assay. Moreover, minimum inhibition concentrations were also measured with reference to chloramphenicol. Thioamide functionally containing ferrocenyl bis‐pyrazoline derivative 2 shows the best antibacterial activity on Escherichia coli and Salmonella typhimurium, among all tested compounds including the reference drug chloramphenicol. The structure–activity relationship is also developed by using computational calculations with density functional theory (DFT)/B3LYP method.  相似文献   

18.
Polycyclic chalcone‐containing polyacrylamides, namely, poly ((N‐(4‐((E)‐3‐(naphthalen‐6‐yl)‐3‐oxoprop‐1‐enyl) phenyl) acrylamide), poly((N‐(4‐((E)‐3‐(1H‐indol‐3‐yl)‐3‐oxoprop‐1‐enyl) phenyl) acrylamide), and poly((N‐(4‐((E)‐3‐oxo‐3‐(10H‐phenothiazin‐8‐yl) prop‐1‐enyl) phenyl) acrylamide), were synthesized by Claisen–Schmidt condensation reaction, followed by ultrasonic irradiation reduction. The synthesized polymers were characterized by Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance, and 13C nuclear magnetic resonance spectroscopic technique. The newly synthesized polymers have been screened for antibacterial and antifungal activities by using resazurin reduction assay method, and the resulting polyacrylamides showed promising activity against various tested bacteria and fungi. Among the polymers, poly((N‐(4‐((E)‐3‐oxo‐3‐(10H‐phenothiazin‐8‐yl) prop‐1‐enyl) phenyl) acrylamide) and poly((N‐(4‐((E)‐3‐(1H‐indol‐3‐yl)‐3‐oxoprop‐1‐enyl) phenyl) acrylamide) exhibited better antifungal and antibacterial activities than poly ((N‐(4‐((E)‐3‐(naphthalen‐6‐yl)‐3‐oxoprop‐1‐enyl) phenyl) acrylamide), whereas all the polymers do not show any sign of antibacterial and antifungal activity against Streptococcus faecalis and Candida glabrata. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Eighteen novel 2‐(1‐aryl‐5‐methyl‐1,2,3‐triazol‐4‐yl)‐1,3,4‐oxadiazole derivatives and two acylhydrazone intermediate compounds were synthesized by various pathways starting from 1‐aryl‐5‐methyl‐1,2,3‐triazol‐4‐formhydrazide ( 1 ). All products were identified by spectroscopic analysis, and 2‐(1‐aryl‐5‐methyl‐1,2,3‐triazol‐4‐yl)‐5‐benzalthio‐1,3,4‐oxadiazole was further validated by X‐ray crystallography. Results from primary antibacterial activity tests indicated that most of the compounds were effective against E. coli, P. aeruginosa, B. subtilis and S. aureus.  相似文献   

20.
A new series of novel chromene‐based oxadiazole derivatives were synthesized from a variety of chromene‐based amidoximes with readily available carboxylic acids under conventional oil bath heating as well as under microwave irradiation. The use of commercially available EDCI and HOBt as coupling reagents in DMF combined with microwave heating resulted in high yields and purities of the product 1,2,4‐oxadiazoles in an expeditious manner. This methodology is successfully applied to synthesize 18 numbers of new 2H‐chromene‐substituted 1,2,4‐oxadiazole derivatives in good to high yields. The structure of the product was ascertained by X‐ray crystallographic analysis. All the synthesized compounds were evaluated for their in vitro antibacterial activity against two different pathogenic bacterial strains, that is, Escherichia coli (MTCC614) and Klebsiella pneumoniae (MTCC4031). The obtained results from in vitro antimicrobial assays indicated that 6g and 6h exhibited good antibacterial activity nearer to the standard drug, gentamicin. The molecular docking studies showed that compounds 6g and 6h show hydrogen bonding interaction with the bacterial target DNA gyrase of E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号