首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 484 毫秒
1.
喹啉不对称氢化反应是不对称氢化研究的重点之一.其氢化产物四氢喹啉不仅是重要的有机合成中间体,同时也是自然界中生物碱的结构单元和生物活性化合物.周永贵研究组首次报道了手性(R)-MeO-Biphep/Ir体系成功用于喹啉的不对称催化,取得了非常好的反应结果.随后他们对喹啉底物进行了拓展,包括拥有特殊取代基的喹啉衍生物,均取得了良好的反应结果.后来多个研究组对该反应进行了深入研究并开发出了多个不同手性膦配体的Ir催化体系.虽然喹啉不对称氢化反应取得了很大的发展,但是该均相反应体系只能在高的反应催化剂用量下才能实现好的结果.进一步研究发现手性配体与金属Ir络合后形成反应活性物种,但后者可发生二聚或三聚,生成的产物是不具有催化活性的,从而导致了反应体系需要高的催化剂的用量.为此人们做了大量研究.范青华研究组通过对BINAP基团上嫁接大空间位阻的枝状分子合成了一系列新的手性BINAP配体,在与Ir络合后,表现出远高于均相催化剂的反应活性,且可循环利用.在该体系中,大位阻的枝状分子起到了阻隔活性物种二聚、三聚的作用,因而提高了反应活性.后来周永贵研究组也尝试通过改变有机配体的方法来实现高的反应活性.他们选择改变手性双膦配体上P原子所连接有机配体的空间位阻来实现对活性物种多聚的控制.实验同样取得了很好的反应效果.对于均相反应体系,我们只能通过这种改变有机配体空间位阻的方式来降低活性物种多聚的可能性,那么如何彻底阻止这种多聚呢?非均相体系给我们提供了很好的研究思路,但如何将非均相体系引入到喹啉不对称氢化反应体系当中成为了难点.共轭微孔聚合物(CMPs)的发展使得手性催化体系很容易从均相转变到非均相.这种材料具有较高的比表面积和固定的开放孔道结构,可应用于非均相催化中.且制备相对容易.我们可以将手性双膦配体作为材料制备配体嫁接到CMPs材料当中.在这种材料当中,手性配体会以有序、空间分离的方式分布,在与Ir配合后应用于喹啉不对称氢化反应中,从而从根本上避免了活性物种多聚的可能因此反应活性提高.我们曾首次成功合成了一系列含有手性(R)-Binap基团的共轭微孔聚合材料-BINAP-CMPs,并将其用于β-酮酸酯的不对称氢化反应当中,取得了很好的催化效果.手性BINAP基团均匀、有序地分散于该材料中.我们尝试利用BINAP-CMPs固有的空间隔离效应,将其应用于喹啉的不对称氢化反应中,结果表明,在相同条件下,非均相BINAP-CMPs/Ir催化体系的TOF值是340 h–1,是均相BINAP/Ir体系(100 h–1)3倍,反应的对映体选择性与均相相当;另外该催化体系多循环利用次后仍可以保持高的反应活性.我们还发现材料结构性质对反应结果的影响很大,材料的比表面积和孔容更大反应结果更好.  相似文献   

2.
自从Merrifieled首创多肽的固相合成以来 ,以聚苯乙烯树脂为支持物的合成方法在化学及生物化学等领域得到广范应用[1~ 3] .作为该方法的一个新的发展方向 ,将手性配体联接在多聚物上用于非均相不对称催化已成为当前不对称合成的热门领域之一 .近年来踊现出大量多聚物固定化的手性不对称催化剂 ,在二乙基锌对醛的不对称加成[4] 及Diels Alder等[5] 反应中显示出优良的不对称催化能力 .光学活性的 1 ,1’ 联萘 2 酚 (BINOL)是不对称催化中应用最广泛的配体之一[6~ 9] .为了将BINOL引入非均相不对称催化 ,我…  相似文献   

3.
金属催化的不对称氢化反应研究进展与展望   总被引:1,自引:0,他引:1  
谢建华  周其林 《化学学报》2012,70(13):1427-1438
手性过渡金属络合物催化的不对称氢化反应是合成光学活性化合物的重要方法. 本文从手性配体及手性催化剂、不对称催化新反应、新方法和新策略三个方面简要评述新世纪以来过渡金属催化的不对称氢化反应研究领域的新进展. 从新世纪初至今, 手性单磷配体得到了复兴, 出现了如MonoPhos、SiPhos、DpenPhos等高效单齿亚磷酰胺酯配体; 磷原子手性(P-手性)配体也得到了快速发展, 如BenzP*、ZhanPhos、TriFer等已成为新的高效手性双膦配体; 螺环骨架手性配体成为新世纪手性配体设计合成的亮点, 除了SiPhos、SIPHOX、SpinPHOX等高效手性螺环配体外, 手性螺环吡啶胺基磷配体SpiroPAP的铱催化剂成为目前最高效的分子催化剂. 不对称催化氢化新反应研究也取得了突破, 如非保护烯胺、杂芳环化合物及N-H亚胺的氢化等反应都实现了高对映选择性. 自组装手性催化剂、树枝状手性催化剂、铁磁性纳米负载的可回收手性催化剂, 以及“混合”配体手性催化剂等新方法和新策略也在不对称催化氢化反应中得到了应用. 然而, 手性过渡金属络合物催化的不对称氢化研究仍然充满挑战, 也期待新的突破.  相似文献   

4.
以喹啉醛与芳胺化合物的不对称还原胺化为关键步骤,设计合成了一类C1-对称且兼具手性并环与大位阻N-取代基两种优势结构单元的手性氮杂环卡宾配体.进一步以钯催化的分子内α-芳基化反应和铜催化的功能化烯烃质子硼化反应为模型反应,详细研究了该类配体的结构与催化性能的关系,发现四氢喹啉骨架上的8-位取代基以及大位阻手性N-取代基均对提升配体的手性诱导能力具有重要作用.  相似文献   

5.
在不对称催化研究中,手性膦配体得到了广泛的应用,已有许多高效的手性膦配体报导,并应用于工业化生产手性化合物[1].BINAP是其中典型代表之一,近年来人们对BINAP进行了各种修饰并将其应用于不对称催化反应也时有报导[2].我们课题组应用近年发明的新型手性钒催化剂成功地用于偶联反应,合成了7,7'-二取代BINOL[3],进而合成了7,7'-二取代的BINAP系列配体1~5.  相似文献   

6.
钌催化β-酮酸酯不对称氢化反应是合成手性β-羟基酯的重要方法之一.综述了近十年来钌催化β-酮酸酯不对称氢化反应的研究进展,重点讨论了手性配体、底物结构、溶剂和添加剂等因素对均相不对称氢化反应的影响以及载体材料和助剂等因素对多相不对称氢化反应的影响.  相似文献   

7.
以8-喹啉羧酸为原料,通过8-喹啉酰氯与手性氨基醇反应或8-喹啉羧酸乙酯与氨基醇的酯交换反应制得酰胺6a-c,再经Ni-Al合金催化还原、甲磺酸催化脱水关环,合成了新型手性氢化喹啉唑啉配体2a-c.在苯乙酮的不对称催化氢转移反应的初步研究中,使用2C与RuCl2(Cymene)]2形成的手性催化剂得到71%产率和44%的e.e值.  相似文献   

8.
不对称氢甲酰化是合成具有单一光学活性物质(如光学活性的醛、α-氨基酸和醇等)最为重要的反应之一.尽管不对称氢甲酰化反应的研究超过40年,但仍然是催化体系中具有挑战性的课题.该反应涉及到产物的化学选择性、立体选择性和对映体选择性的优化.目前,在Rh催化体系中,使用磷-亚磷酸酯手性配体或双亚磷酸酯配体可以在不对称氢甲酰化反应中取得优异的催化性能.然而在Rh/手性双膦配体催化体系中,不对称氢甲酰化反应性能通常很低.以BINAP配体为例,负载Rh金属后,在催化苯乙烯不对称氢甲酰化反应中,产物的ee值只有25%.同时,由于均相催化体系存在催化剂回收和产物提纯等问题,因此有必要研究多相不对称氢甲酰化反应催化剂.本文使用乙烯基修饰的BINAP配体5,5'-divinyl-BINAP与具有不同结构的共聚单体二乙烯基苯或1,3,5-三乙烯基苯基苯共聚,得到具有不同孔结构的聚合物Poly-1和Poly-2.为了比较,利用线性共聚单体乙二醇二甲基丙烯酸甲酯与乙烯基BINAP共聚得到聚合物Poly-3.上述三种聚合物材料负载金属Rh后,用作苯乙烯不对称氢甲酰化反应的催化剂.固体13C核磁分析表明,三种聚合物材料负载金属后仍然保持较为稳定的C骨架结构.通过31p核磁可以看到,嵌入在材料骨架中的BIANP仍然保持未被氧化的状态.N2物理吸附结果发现Poly-1和Poly-2具有较大的比表面积和孔体积,而Poly-3的比表面积最小.热重分析显示,这些材料具有较高的热稳定性.在不同反应溶剂中催化剂活性差异较大.通过优化反应温度和合成气压力后,催化剂Rh/Poly-1在80℃和0.2 MPa下产物的对映体选择性可高达58.9%,支链醛与直链醛的比值为8.5;而在相同反应条件下,均相催化剂Rh-BINAP的ee值仅为35.3%,但高于Rh/Poly-3.这是由于三个多相催化剂骨架中BINAP周围环境不同所致.前两个催化剂中,BINAP与空间位阻较大的单体相连接,使得反应底物按照特定方向与催化活性位点接触,形成了类似于手性口袋的结构.而Rh/Poly-3中,BIANP周围是线性的共聚单体,不能形成有效的手性口袋结构.Rh/Poly-1重复使用7次后,催化活性没有显著下降.拓展X射线吸收精细结构表征结果表明,Rh/Poly-1催化剂使用前没有Rh-Rh键存在,但经重复使用后,Rh金属部分聚集,生成了Rh-Rh键.球差电镜照片也证实了这一点.  相似文献   

9.
不对称氢甲酰化是合成具有单一光学活性物质(如光学活性的醛、α-氨基酸和醇等)最为重要的反应之一.尽管不对称氢甲酰化反应的研究超过40年,但仍然是催化体系中具有挑战性的课题.该反应涉及到产物的化学选择性、立体选择性和对映体选择性的优化.目前,在Rh催化体系中,使用磷-亚磷酸酯手性配体或双亚磷酸酯配体可以在不对称氢甲酰化反应中取得优异的催化性能.然而在Rh/手性双膦配体催化体系中,不对称氢甲酰化反应性能通常很低.以BINAP配体为例,负载Rh金属后,在催化苯乙烯不对称氢甲酰化反应中,产物的ee值只有25%.同时,由于均相催化体系存在催化剂回收和产物提纯等问题,因此有必要研究多相不对称氢甲酰化反应催化剂.本文使用乙烯基修饰的BINAP配体5,5'-divinyl-BINAP与具有不同结构的共聚单体二乙烯基苯或1,3,5-三乙烯基苯基苯共聚,得到具有不同孔结构的聚合物Poly-1和Poly-2.为了比较,利用线性共聚单体乙二醇二甲基丙烯酸甲酯与乙烯基BINAP共聚得到聚合物Poly-3.上述三种聚合物材料负载金属Rh后,用作苯乙烯不对称氢甲酰化反应的催化剂.固体~(13)C核磁分析表明,三种聚合物材料负载金属后仍然保持较为稳定的C骨架结构.通过~(31)P核磁可以看到,嵌入在材料骨架中的BIANP仍然保持未被氧化的状态.N_2物理吸附结果发现Poly-1和Poly-2具有较大的比表面积和孔体积,而Poly-3的比表面积最小.热重分析显示,这些材料具有较高的热稳定性.在不同反应溶剂中催化剂活性差异较大.通过优化反应温度和合成气压力后,催化剂Rh/Poly-1在80℃和0.2MPa下产物的对映体选择性可高达58.9%,支链醛与直链醛的比值为8.5;而在相同反应条件下,均相催化剂Rh-BINAP的ee值仅为35.3%,但高于Rh/Poly-3.这是由于三个多相催化剂骨架中BINAP周围环境不同所致.前两个催化剂中,BINAP与空间位阻较大的单体相连接,使得反应底物按照特定方向与催化活性位点接触,形成了类似于手性口袋的结构.而Rh/Poly-3中,BIANP周围是线性的共聚单体,不能形成有效的手性口袋结构.Rh/Poly-1重复使用7次后,催化活性没有显著下降.拓展X射线吸收精细结构表征结果表明,Rh/Poly-1催化剂使用前没有Rh-Rh键存在,但经重复使用后,Rh金属部分聚集,生成了Rh-Rh键.球差电镜照片也证实了这一点.  相似文献   

10.
亮点介绍     
《有机化学》2012,(11):2198-2201
铱催化3,4-二取代异喹啉的不对称氢化Angew.Chem.Int.Ed.2012,51,8286~8289手性四氢异喹啉骨架是生物碱和手性药物分子中的重要结构单元.对异喹啉化合物进行不对称氢化是得到手性四氢异喹啉化合物最直接有效的途径.但是由于存在底物活性低和底物和氢化产物对催化剂具有抑制作用,异喹啉的不对称氢化是一个未能很好解决的难题.  相似文献   

11.
Wang ZJ  Deng GJ  Li Y  He YM  Tang WJ  Fan QH 《Organic letters》2007,9(7):1243-1246
[structure: see text]. The asymmetric hydrogenation of quinolines catalyzed by chiral dendritic catalysts derived from BINAP gave the corresponding products with high enantioselectivities (up to 93%), excellent catalytic activities (TOF up to 3450 h(-1)), and productivities (TON up to 43,000). In addition, the third-generation catalyst could be recovered by precipitation and filtration and reused at least six times with similar enantioselectivity.  相似文献   

12.
The chiral diphosphinite ligand derived from (R)-1,1'-spirobiindane-7,7'-diol has been found to be highly effective in the Ir-catalyzed asymmetric hydrogenation of quinolines with high substrate/catalyst ratio (up to 5000) and high enantioselectivity (up to 94% ee).  相似文献   

13.
A series of tunable axial chiral bisphosphine ligands have been synthesized from (S)-MeO-Biphep. The Ir complex of the MeO-PEG-supported ligand (S)-4k has been successfully applied in asymmetric hydrogenation of quinolines with up to 92% ee. The catalyst system is air-stable and recyclable.  相似文献   

14.
Well‐designed, self‐assembled, metal–organic frameworks were constructed by simple mixing of multitopic MonoPhos‐based ligands ( 3 ; MonoPhos=chiral, monodentate phosphoramidites based on the 1,1′‐bi‐2‐naphthol platform) and [Rh(cod)2]BF4 (cod=cycloocta‐1,5‐diene). This self‐supporting strategy allowed for simple and efficient catalyst immobilization without the use of extra added support, giving well‐characterized, insoluble (in toluene) polymeric materials ( 4 ). The resulting self‐supported catalysts ( 4 ) showed outstanding catalytic performance for the asymmetric hydrogenation of a number of α‐dehydroamino acids ( 5 ) and 2‐aryl enamides ( 7 ) with enantiomeric excess (ee) ranges of 94–98 % and 90–98 %, respectively. The linker moiety in 4 influenced the reactivity significantly, albeit with slight impact on the enantioselectivity. Acquisition of reaction profiles under steady‐state conditions showed 4 h and 4 i to have the highest reactivity (turnover frequency (TOF)=95 and 97 h?1 at 2 atm, respectively), whereas appropriate substrate/catalyst matching was needed for optimum chiral induction. The former was recycled 10 times without loss in ee (95–96 %), although a drop in TOF of approximately 20 % per cycle was observed. The estimation of effective catalytic sites in self‐supported catalyst 4 e was also carried out by isolation and hydrogenation of catalyst–substrate complex, showing about 37 % of the RhI centers in the self‐supported catalyst 4 e are accessible to substrate 5 c in the catalysis. A continuous flow reaction system using an activated C/ 4 h mixture as stationary‐phase catalyst for the asymmetric hydrogenation of 5 b was developed and run continuously for a total of 144 h with >99 % conversion and 96–97 % enantioselectivity. The total Rh leaching in the product solution is 1.7 % of that in original catalyst 4 h .  相似文献   

15.
喹啉及其衍生物的多相不对称氢转移是制备杂环手性化合物的理想策略.多相手性催化体系具有催化剂可循环利用及产物分离提纯容易等优势.然而,喹啉及其衍生物的多相手性高效催化体系鲜有报道.这主要是由于多相手性氢转移为水-油-固三相反应,在反应的过程中,传质问题极大影响固体催化剂的催化性能.因此,发展具有相转移功能的手性催化材料,是提高多相氢转移体系催化效率的有效途径.本文采用一锅法合成策略,通过离子液体(ILs)为连接基团实现了TsDPEN手性配体在SBA-15介孔孔道中的嫁接.与Rh盐配位后,获得手性固体催化剂SBA-ILBF4-TsDPEN-Rh.FI-IR光谱和13C NMR结果表明,手性催化活性中心成功负载在SBA-15中,随着手性活性中心负载量的增加,SBA-ILBF4-TsDPEN-Rh的比表面积、孔径和孔容逐渐降低.在喹啉衍生物不对称氢转移反应中,SBA-ILBF4-TsDPEN-Rh系列催化剂催化得到产物的ee值为91%,表明多相手性催化剂具有较高的手性选择性.多相手性催化剂的催化活性随着活性中心负载量的上升而呈现下降的趋势,这主要是由于活性中心负载量较低的多相催化剂具有更高的比表面积和孔容,更有利于催化过程中的传质.与均相手性催化剂相比,优化后的多相手性催化剂表现出更高的催化活性(TOF值分别为75和92 h-1).作为对比,本文还合成了采用烷基链为连接基团的SBA-TsDPEN25-Rh,并以其为基础进一步嫁接了ILs基团,得到SBA-TsDPEN20-ILBF4-Rh.在相同的反应条件下,SBA-ILBF4-TsDPEN50-Rh表现出更高的催化活性.上述结果证实了ILs基团在反应过程中起到相转移以及富集氢源甲酸盐的作用,极大促进了喹哪啶不对称氢转移多相催化体系的活性,并且ILs基团和手性活性中心在空间距离上的接近更有利于催化活性的提高.此外,本文还研究了反应体系pH值对固体催化剂上反应速率的影响,随着反应的进行,反应溶液的pH会呈现明显上升的趋势,导致反应速率减缓以及底物转化受限.通过在反应过程中加入适量甲酸或者选用浓度更高的缓冲溶液可以有效防止催化过程中反应速率的减慢.综上可见,负载手性催化剂中的连接基团对多相手性催化剂的催化性能有重要影响.通过改变手性配体的连接基团提高手性固体催化剂的催化活性和手性选择性的策略可以拓展到其他多相手性催化体系.  相似文献   

16.
新型手性胺膦-铱体系催化芳香酮的不对称转移氢化   总被引:2,自引:0,他引:2  
合成了含-CH_3取代基的PNNP型手性双胺双膦配体, 并采用核磁共振、质谱、红外光谱及圆二色光谱等方法对其进行了表征. 在异丙醇溶液中, 考察了该配体与[IrHCI_2(COD)]_2组成的手性胺膦-铱体系对多种芳香酮的不对称转移氢化性能. 结果表明, 该手性胺膦-铱体系是催化多种芳香酮不对称氢转移氢化的优秀催化剂. 在室温下, 用该体系催化1,1-二苯基丙酮时, 可得到99%的转化率和99% ee的对映选择性.  相似文献   

17.
赵秋堂 《广州化学》2012,37(2):64-68
近年来手性沙美特罗的合成方法有微生物催化、不对称氢化、CBS(Corey-Bakshi-Shibata)还原反应及不对称Henry反应、手性(Salen)Co试剂催化的HKR(末端环氧不对称水解动力学)拆分反应等。对这些方法进行比较,结果表明,不对称催化合成由于其反应收率高、反应产物光学纯度高、操作容易控制,在目前手性药物的合成中处于主导地位。此外酶催化不对称合成、手性辅基诱导的对映选择性合成等方法也是有效的途径。  相似文献   

18.
手性羰基铁络合物很少被用于芳香酮的不对称氢转移氢化.利用不同的羰基铁络合物与手性双胺双膦配体现场络合,形成手性胺膦铁催化体系.考察了它们对多种芳香酮的不对称氢转移催化氢化性能.结果表明,三核的手性胺膦铁簇合物是催化芳香酮不对称氢转移氢化的较好体系.当用三核的铁簇合物[Et3NH]+[HFe3(CO)11]-体系催化1,1-二苯基丙酮的氢化时,最高可获得98%的对映选择性.通过现场红外光谱测定,揣测羰基铁簇合物Fe3(CO)12在催化反应过程中保持三核的簇合物的簇骼不变.  相似文献   

19.
A new catalytic system has been developed for the asymmetric hydrogenation of β‐secondary‐amino ketones using a highly efficient P‐chiral bisphosphine–rhodium complex in combination with ZnCl2 as the activator of the catalyst. The chiral γ‐secondary‐amino alcohols were obtained in 90–94 % yields, 90–99 % enantioselectivities, and with high turnover numbers (up to 2000 S/C; S/C=substrate/catalyst ratio). A mechanism for the promoting effect of ZnCl2 on the catalytic system has been proposed on the basis of NMR spectroscopy and HRMS studies. This method was successfully applied to the asymmetric syntheses of three important drugs, (S)‐duloxetine, (R)‐fluoxetine, and (R)‐atomoxetine, in high yields and with excellent enantioselectivities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号