首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
基于介孔二氧化硅纳米颗粒的可控释放体系   总被引:2,自引:0,他引:2  
基于介孔二氧化硅的控制释放体系具有良好的生物相容性、细胞靶向性、精准响应性控制释放和到达目标位点前有效阻止药物释放等功能特性。近年来,基于介孔二氧化硅的可控释放体系已成为众多科研工作者研究的热点。本文讨论了基于介孔二氧化硅纳米颗粒可控释放体系的特点,同时以不同的响应特性为主线,系统分析和总结了各种响应性介孔二氧化硅控释体系的开关及其控制释放机制,包括氧化还原控释系统、光控释系统、pH控释系统及生物分子相关控释系统等一系列基于介孔二氧化硅的控释系统,并对该领域未来的发展方向作了展望。  相似文献   

2.
利用先进纳米技术开发的药物递送体系能够改善药物的理化性质和治疗效果,同时削弱其毒副作用,因而纳米药物递送体系成为现代药剂学研究的热点和主流方向。其中,介孔二氧化硅作为纳米载体的基质材料具有比表面积大、形貌结构可调、表面易于修饰及生物相容性良好等优点,引发生物医学研究人员的广泛关注,为构筑新型智能药物递送体系提供了新的设计思路。本文就介孔二氧化硅基智能递送体系在设计构筑和疾病治疗应用等方面的最新研究进展进行了综述。首先,本文对介孔硅的发展历程、制备方法及结构特性进行了简要概述;其次,从药物装载和门控释放两大角度系统阐述了近些年介孔硅基智能递送体系的构建策略,重点介绍了各种刺激响应性介孔硅基递送体系的门控开关(如聚合物、无机纳米颗粒、超分子组装体及生物大分子等)及其可控释放机制;随后,详细描述了介孔硅基控释体系在各种类型疾病(包括癌症、细菌感染、糖尿病和阿尔茨海默病等)治疗中的应用进展;最后,总结和分析了介孔硅基智能纳米载体研究中存在的问题并对其未来发展作了展望。  相似文献   

3.
通过在包覆了金纳米棒的介孔硅表面修饰生物相容性的透明质酸, 得到了具有肿瘤靶向性的多功能药物载体. 实验结果表明, 透明质酸可以通过酰胺键修饰在介孔硅表面, 所得药物载体可在透明质酸酶作用下实现选择性释放. 该体系在近红外区域具有较高的吸收, 可以在近红外光照射下实现光热转换. 细胞实验结果表明, 该多功能药物载体可以有效靶向CD44过量表达的乳腺癌细胞, 通过CD44介导的内吞富集在肿瘤内部, 结合化学药物治疗和光热治疗, 显示出更高的肿瘤细胞凋亡效率.  相似文献   

4.
多重响应性介孔二氧化硅纳米微球的制备及载药研究   总被引:2,自引:0,他引:2  
采用溶胶凝胶法制备了以油酸稳定的Fe3O4为核, 十六烷基三甲基溴化铵(CTAB)为模板剂的磁响应性的介孔二氧化硅纳米微球; 通过孔道内修饰羧基和巯基, 链转移反应修饰线性的聚(N-异丙基丙烯酰胺-co-N-羟甲基丙烯酰胺)共聚物得到多重响应性的介孔二氧化硅纳米微球P(NIPAM-co-NHMA)@M-MSN(-COOH). 利用Brunauer-Emmett-Teller (BET)、振动样品磁强计(VSM)、透射电子显微镜(TEM)、紫外光谱(UV/Vis)表征了微球的物理化学性质. 阿霉素(DOX)被用作模型药物研究了这种多重响应性的介孔二氧化硅纳米微球作为药物载体的载药及药物释放行为, 结果显示这种纳米微球载药率高达48%, 药物释放呈现对温度和pH的双重响应性, 可以实现对药物的控制释放.  相似文献   

5.
以粒径90 nm的介孔碳纳米球作为靶向传药载体, 采用酸化处理改进了材料表面的亲疏水性及在溶液中的分散性, 通过壳寡糖功能化, 并利用EDC-NHS将叶酸修饰到介孔碳纳米球表面. 通过共聚焦激光扫描显微镜及流式细胞仪对实验体系的系统研究, 结果表明基于叶酸功能化的介孔碳纳米球能够有效提高负载药物对于HeLa细胞的跨膜转运效率, 叶酸阳性表达的HeLa细胞对于叶酸修饰的介孔碳纳米小球的吞噬效率明显高于叶酸阴性表达的MCF-7细胞. 对HeLa细胞毒性的定量分析表明叶酸的靶向作用在提高介孔碳纳米球内吞效率的同时, 进一步提高了阿霉素对于HeLa细胞的毒性.  相似文献   

6.
基于生物矿化的纳米载药体系具有制备简单、良好的生物相容性和控制药物释放的能力、易被修饰且具备多功能性和靶向性等优点,在临床中拥有巨大的应用前景。本文系统阐述了基于生物矿化的纳米载体的构建原理和分类,重点介绍了它们的靶向性策略和刺激响应释放策略,并展望了其在临床治疗中的应用。  相似文献   

7.
肖云  唐睿康 《无机化学学报》2017,33(11):1937-1946
基于生物矿化的纳米载药体系具有制备简单、良好的生物相容性和控制药物释放的能力、易被修饰且具备多功能性和靶向性等优点,在临床中拥有巨大的应用前景。本文系统阐述了基于生物矿化的纳米载体的构建原理和分类,重点介绍了它们的靶向性策略和刺激响应释放策略,并展望了其在临床治疗中的应用。  相似文献   

8.
通过对介孔二氧化硅纳米粒子(MSN)载药机理、药物控释机理和靶向方法的介绍,对MSN在可控药物传输系统中的应用加以综述.  相似文献   

9.
选择带负电荷且溶解度和分子结构对pH值非常敏感的聚丙烯酸作为封堵分子, 采用静电吸附的修饰方法, 制备了pH响应的MCM-41型介孔二氧化硅纳米颗粒. 利用高倍透射电子显微镜(TEM)、 X射线衍射(XRD)、 傅里叶变换红外光谱(FTIR)及比表面积分析等手段表征了介孔二氧化硅纳米颗粒的物理化学性质. 以联钌吡啶染料分子作为模式客体分子, 研究了pH调控下的模式客体分子在介孔二氧化硅纳米颗粒中的包裹及释放行为. 结果表明, 该介孔二氧化硅纳米颗粒对pH具有很好的响应性; 在近中性条件下, 带正电的二氧化硅纳米颗粒通过静电吸附作用吸附带负电的聚丙烯酸, 导致介孔封堵, 使包载的染料分子几乎无释放; 客体分子的释放率随着pH值的降低而升高, 当pH≤5时, 染料分子显著释放, pH=1时客体分子的释放率高达98%, 可以实现对包载客体分子的控制释放. 该pH响应的介孔二氧化硅纳米颗粒载体具有制备简便、 价格低廉和包载量大等优点, 有望应用于药物的控制释放.  相似文献   

10.
在特定外界刺激下, 修饰于介孔纳米材料表面的超分子纳米阀门可以有效地控制所包封物质如药物模型分子、 抗癌药物分子和寡核酸等生物分子的靶向释放, 在药物释放、 基因转染及传感等领域有广泛的应用前景. 本文结合本课题组的工作, 综述了国内外在基于大环合成受体的超分子纳米阀门体系的化学构筑及功能等方面的研究进展.  相似文献   

11.
Herein, we present a straightforward synthesis of pH‐responsive chitosan‐capped mesoporous silica nanoparticles (MSNs). These MCM‐41‐type MSNs could be used as nanocapsules to accommodate guest molecules. Subsequently, (3‐glycidyloxypropyl)trimethoxysilane was grafted onto the surface of the MSNs, which served as a bridge to link between MSNs and chitosan, which is ubiquitous in nature and commercially available. Owing to the pH‐responsive and biocompatible features of chitosan, the loading and release of an anti‐cancer drug, doxorubicin hydrochloride, were carried out in vitro, in which the composite chitosan‐capped MSNs (CS‐MSNs) showed excellent environmental response. As the pH value of the media decreased, the degree of drug release correspondingly increased. Moreover, thanks to the perfect biocompatibility of chitosan, the CS‐MSNs exhibited lower cytotoxicity than that of the naked MSNs in an MTT assay. In addition, the in vitro kill potency against MCF‐7 breast‐cancer cells was enhanced over time, as well as with increasing concentration of the drug‐loaded CS‐MSNs. These results indicate that CS‐MSNs are promising candidates for pH‐responsive drug delivery in cancer therapy.  相似文献   

12.
Fragrances are frequently added to a variety of products, including food, cosmetics and health products. However, the high volatility and instability of essence limit its application in some fields. In this study, mesoporous silica nanoparticles (MSNs) were prepared to encapsulate eugenol, which could reduce the volatilization of the fragrance molecules. A facile approach was presented to synthesize MSNs with three different pore diameters for encapsulating eugenol. In addition, the properties of MSNs including mean particle size, morphology, encapsulating efficiency and release tendency were characterized. Results showed that the larger the pore diameters of MSNs, the more aromatic molecules were adsorbed. Furthermore, the release mechanism was described as the smaller the pore diameters of MSNs, the slower the release of eugenol.  相似文献   

13.
The hierarchically structured core‐shell magnetic mesoporous silica nanospheres (Mag‐MSNs) have attracted extensive attention, particularly in studies involving reliable preparations and diverse applications of the multifunctional nanomaterials in multi‐disciplinary fields. Intriguingly, Mag‐MSNs have been prepared with well‐designed synthesis strategies and used as adsorbent materials, biomedicines, and in proteomics and catalysis due to their excellent magnetic responsiveness, enormous specific surface area and readiness for surface modifications. Through a carefully designed surface modification of Mag‐MSNs, the performance and application prospects of the material are greatly improved. Typically, the introduction of various molecular matrices into the shell of Mag‐MSNs facilitates the combination of surface modifications and magnetic separation technology. So far, as sustainable chemistry is concerned, it is important to recover the functionalized core‐shell Mag‐MSNs after the reaction and reuse them without losing activity. In this review, the design conceptions and the construction of core‐shell Mag‐MSNs are discussed. Furthermore, various surface modification approaches of core‐shell Mag‐MSNs are summarized, and recent applications of these functionalized nanomaterials in the fields of biomedicine, catalysis, proteomics and wastewater treatment are exemplified.  相似文献   

14.
Multifunctional mesoporous silica nanoparticles (MSNs) are good candidates for multimodal applications in drug delivery, bioimaging, and cell targeting. In particular, controlled release of drugs from MSN pores constitutes one of the superior features of MSNs. In this study, a novel drug delivery carrier based on MSNs, which encapsulated highly sensitive 19F magnetic resonance imaging (MRI) contrast agents inside MSNs, was developed. The nanoparticles were labeled with fluorescent dyes and functionalized with small molecule-based ligands for active targeting. This drug delivery system facilitated the monitoring of the biodistribution of the drug carrier by dual modal imaging (NIR/19F MRI). Furthermore, we demonstrated targeted drug delivery and cellular imaging by the conjugation of nanoparticles with folic acid. An anticancer drug (doxorubicin, DOX) was loaded in the pores of folate-functionalized MSNs for intracellular drug delivery. The release rates of DOX from the nanoparticles increased under acidic conditions, and were favorable for controlled drug release to cancer cells. Our results suggested that MSNs may serve as promising 19F MRI-traceable drug carriers for application in cancer therapy and bio-imaging.  相似文献   

15.
A series of functional mesoporous silica nanoparticles(MSNs) was synthesized by a one-step simple synthesis approach involving co-condensation of tetraethoxysilane(TEOS) and salicylaldimine ligand(Sal-Si) in the presence of cetyltrimethylammonium chloride(CTAC) under basic conditions.The target MSNs with different sizes (50,100 and 200 nm,respectively) were obtained.Furthermore,the Ca^2+ cations were also introduced into MSNs.The prepared nanoparticles were characterized by means of infrared(IR) spectra,thermogravimetric analysis(TGA),inductively coupled plasma(ICP),CHN elemental analysis,nitrogen adsorption-desorption,scanning electron microscope(SEM) and transmission electron microscope(TEM).Ibuprofen(IBU) which contains carboxyl groups was selected as a model drug.The results of drug loading and release reveal that the loading capacities and release behaviors of the model drug are highly dependent on the Ca^2+ cations in MSNs.The release of IBU from the MSNs functionalized by Ca^2+ cations is found to be effectively controlled when compared to the release from the MSNs without the functionalization of Ca^2+ cations,which is due to the ionic interaction between carboxyl groups in IBU and Ca^2+ cations in MSNs.  相似文献   

16.
A pH‐controlled delivery system based on mesoporous silica nanoparticles (MSNs) was constructed for dual‐cargo selective release. To achieve a better controlled‐release effect, a modified sol–gel method was employed to obtain MSNs with tunable particle and pore sizes. The systems selectively released different kinds of cargo when stimulated by different pH values. At the lower pH value (pH 2.0) only one kind of cargo was released from the MSNs, whereas at a higher pH value (pH 7.0) only the other kind of cargo was released from the MSNs. The multi‐cargo delivery system has brought the concept of selective release to new advances in the field of functional nanodevices and allows more accurate and controllable delivery of specific cargoes, which is expected to have promising applications in nanomedicine.  相似文献   

17.
The mesoporous silica materials had a high loading efficiency of sirolimus-SMEDDS. The length of the mesopores played a more important role than the pore diameter in drug dissolution and in vivo absorption.  相似文献   

18.
A pH-sensitive controlled release system was proposed in this work, which consists of mesoporous silica nanoparticles(MSNs) functionalized on the pore outlets with poly(4-vinylphenybronic acid-co-2-(dimethylamino)ethyl acrylate) [P(VPBA-DMAEA)]. Four kinds of P(VPBA-DMAEA)-gated MSNs were synthesized and applied for the p H-sensitive controlled release. The results showed that P(VPBADMAEA) can work as a p H-sensitive nanovalve. The release behavior of the hybrid nanoparticles could be adjusted by changing the mole ratio of VPBA and DMAEA. With the increasing of the mole ratio of VPBA,the leakage of the entrapped molecules in the pores of MSNs could be decreased at neutral and alkaline conditions. By altering the p H of buffer from 4.0 to 8.0, the valve could be switched ‘‘on' and ‘‘off'reversibly. In addition, cells viability results indicated that these P(VPBA-DMAEA)-gated MSNs had good biocompatibility. We believe that these MSNs based p H-sensitive controlled release system will provide a promising nanodevice for sited release of drug delivery.  相似文献   

19.
Engineering self‐propelled micromotors with good biocompatibility and biodegradability for actively seeking disease sites and targeted drug transport remains a huge challenge. In this study, neutrophils with intrinsic chemotaxis capability were transformed into self‐guided hybrid micromotors by integrating mesoporous silica nanoparticles (MSNs) with high loading capability. To ensure the compatibility of neutrophil cells with drug‐loaded MSNs, bacteria membranes derived from E. coli were coated on MSNs in advance by a camouflaging strategy. The resulting biohybrid micromotors inherited the characteristic chemotaxis capability of native neutrophils and could effectively move along the chemoattractant gradients produced by E. coli . Our studies suggest that this camouflaging approach, which favors the uptake of MSNs into neutrophils without loss of cellular activity and motility, could be used to construct synthetic nanoparticle‐loaded biohybrid micromotors for advanced biomedical applications.  相似文献   

20.
Emulsion polymerization of ethylene from vinyl functionalized mesoporous silica nanoparticles (V‐MSNs) was reported. V‐MSNs were synthesized via deposition of vinyl monolayers on the pore walls, and the relative surface coverage of the vinyl monolayers was 74%. A fluorinated P‐O‐chelated nickel catalyst coordinated to the vinyl groups. These V‐MSNs hosting catalysts were full dispersed in water assisted by ultrasonic processor in the presence of surfactants. After addition of ethylene, polyethylene (PE) chains grew from the pores of V‐MSNs, formation of stable nanocomposite latices with solid content up to 17.3%. Our method made V‐MSNs well‐dispersed in the PE matrix. Especially, because of a strong interaction between PE and nanoparticles, a stable V‐MSNs core/PE shell structure was formed upon thermal treatment above melting temperature of the PE. Samples were analyzed by a number of techniques including TEM, N2 adsorption‐desorption, FTIR, and solid state 29Si NMR, DLS, 1H NMR, GPC, and DSC. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1393–1402, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号