首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A pH-sensitive controlled release system was proposed in this work, which consists of mesoporous silica nanoparticles(MSNs) functionalized on the pore outlets with poly(4-vinylphenybronic acid-co-2-(dimethylamino)ethyl acrylate) [P(VPBA-DMAEA)]. Four kinds of P(VPBA-DMAEA)-gated MSNs were synthesized and applied for the p H-sensitive controlled release. The results showed that P(VPBADMAEA) can work as a p H-sensitive nanovalve. The release behavior of the hybrid nanoparticles could be adjusted by changing the mole ratio of VPBA and DMAEA. With the increasing of the mole ratio of VPBA,the leakage of the entrapped molecules in the pores of MSNs could be decreased at neutral and alkaline conditions. By altering the p H of buffer from 4.0 to 8.0, the valve could be switched ‘‘on' and ‘‘off'reversibly. In addition, cells viability results indicated that these P(VPBA-DMAEA)-gated MSNs had good biocompatibility. We believe that these MSNs based p H-sensitive controlled release system will provide a promising nanodevice for sited release of drug delivery.  相似文献   

2.
《中国化学快报》2021,32(12):3696-3704
Drug delivery systems (DDS) are used to deliver therapeutic drugs to improve selectivity and reduce side effects. With the development of nanotechnology, many nanocarriers have been developed and applied to drug delivery, including mesoporous silica. Mesoporous silica nanoparticles (MSNs) have attracted a lot of attention for simple synthesis, biocompatibility, high surface area and pore volume. Based on the pore system and surface modification, gated mesoporous silica nanoparticles can be designed to realize on-command drug release, which provides a new approach for selective delivery of antitumor drugs. Herein, this review mainly focuses on the “gate keepers” of mesoporous silica for drug controlled release in nearly few years (2017–2020). We summarize the mechanism of drug controlled release in gated MSNs and different gated materials: inorganic gated materials, organic gated materials, self-gated drug molecules, and biological membranes. The facing challenges and future prospects of gated MSNs are discussed rationally in the end.  相似文献   

3.
Herein, we present a straightforward synthesis of pH‐responsive chitosan‐capped mesoporous silica nanoparticles (MSNs). These MCM‐41‐type MSNs could be used as nanocapsules to accommodate guest molecules. Subsequently, (3‐glycidyloxypropyl)trimethoxysilane was grafted onto the surface of the MSNs, which served as a bridge to link between MSNs and chitosan, which is ubiquitous in nature and commercially available. Owing to the pH‐responsive and biocompatible features of chitosan, the loading and release of an anti‐cancer drug, doxorubicin hydrochloride, were carried out in vitro, in which the composite chitosan‐capped MSNs (CS‐MSNs) showed excellent environmental response. As the pH value of the media decreased, the degree of drug release correspondingly increased. Moreover, thanks to the perfect biocompatibility of chitosan, the CS‐MSNs exhibited lower cytotoxicity than that of the naked MSNs in an MTT assay. In addition, the in vitro kill potency against MCF‐7 breast‐cancer cells was enhanced over time, as well as with increasing concentration of the drug‐loaded CS‐MSNs. These results indicate that CS‐MSNs are promising candidates for pH‐responsive drug delivery in cancer therapy.  相似文献   

4.
A pH‐controlled delivery system based on mesoporous silica nanoparticles (MSNs) was constructed for dual‐cargo selective release. To achieve a better controlled‐release effect, a modified sol–gel method was employed to obtain MSNs with tunable particle and pore sizes. The systems selectively released different kinds of cargo when stimulated by different pH values. At the lower pH value (pH 2.0) only one kind of cargo was released from the MSNs, whereas at a higher pH value (pH 7.0) only the other kind of cargo was released from the MSNs. The multi‐cargo delivery system has brought the concept of selective release to new advances in the field of functional nanodevices and allows more accurate and controllable delivery of specific cargoes, which is expected to have promising applications in nanomedicine.  相似文献   

5.
We succeeded in large-scale preparation of single-wall carbon nanohorns (SWNH) encapsulating C60 molecules in a liquid phase at room temperature using a "nano-precipitation" method, that is, complete evaporation of the toluene from a C60-SWNH-toluene mixture. The C60 molecules were found to occupy 6-36% of the hollow space inside the SWNH, depending on the initial quantity of C60. We showed that the C60 in C60@SWNHox was quickly released in toluene, and the release rate decreased by adding ethanol to toluene. Numerical analysis of the release profiles indicated that there were fast and slow release processes. We consider that the incorporation quantity and the release rate of C60 were controllable in/from SWNHs because SWNHs have large diameters, 2-5 nm.  相似文献   

6.
In the past decade, mesoporous silica nanoparticles (MSNs) as nanocarriers have showed much potential in advanced nanomaterials due to their large surface area and pore volume. Especially, more and more MSNs based nanodevices have been designed as efficient drug delivery systems (DDSs) or biosensors. In this paper, lipid, protein and poly(NIPAM) coated MSNs are reviewed from the preparation, properties and their potential application. We also introduce the preparative methods including physical adsorption, covalent binding and self-assembly on the MSNs' surfaces. Furthermore, the interaction between the aimed cells and these molecular modified MSNs is discussed. We also demonstrate their typical applications, such as photodynamic therapy, bioimaging, controlled release and selective recognition in biomedical field.  相似文献   

7.
Fragrances are widely used in cosmetics,apparel and detergents.However,the rapid evaporation of the aro ma shortens the useful life of the aromatic product.Therefore,improving the fragrance retention time of aromatic products and prolonging the service life of aromatic products are the key scientific problems that need to be solved in current aromatic products.In this study,zwitterionic comb-like lipid polymers were synthesized to encapsulate the fragrance molecule linalool.The results showed that the zwitterionic comb lipid molecules were capable of encapsulating more linalool than linear lipid molecules.At the same time,the zwitterionic comb-like lipid molecules also limited the slow release rate of the aroma,thereby increasing the fragrance retention time of the nano-fragrance.  相似文献   

8.
An MCM-41-type mesoporous silica nanoparticle (MSN) material with a large average pore diameter (5.4 nm) is synthesized and characterized. The in vitro uptake and release profiles of cytochrome c by the MSN were investigated. The enzymatic activity of the released protein was quantitatively analyzed and compared with that of the native cytochrome c in physiological buffer solutions. We found that the enzymes released from the MSNs are still functional and highly active in catalyzing the oxidation of 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonate) (ABTS) by hydrogen peroxide. In contrast to the fact that cytochrome c is a cell-membrane-impermeable protein, we discovered that the cytochrome c-encapsulated MSNs could be internalized by live human cervical cancer cells (HeLa) and the protein could be released into the cytoplasm. We envision that these MSNs with large pores could serve as a transmembrane delivery vehicle for controlled release of membrane-impermeable proteins in live cells, which may lead to many important biotechnological applications including therapeutics and metabolic manipulation of cells.  相似文献   

9.
Fragrances are widely used in many aspects of our lives. They cannot only make people happy, but also treat many diseases. However, excessively fast evaporation rate is one of the main obstacles to the use of spices. In this study, mesoporous silica nanorods (MSNRs) and hollow mesoporous silica nanorods (HMSNRs) were prepared to encapsulate eugenol. These two nano-fragrances were named eugenol@MSNRs and eugenol@HMSNRs, respectively. The morphologies, size, interior structures and pore performances of MSNRs and HMSNRs. Besides, the performances of encapsulation and fragrance release of eugenol@MSNRs and eugenol@HMSNRs were compared and analyzed. The results showed that eugenol@HMSNRs encapsulated more fragrance and were faster to encapsulate compared with eugenol@MSNRs. Both the release rates of eugenol from eugenol@MSNRs and eugenol@HMSNRs were slow. But the eugenol was released from eugenol@MSNRs more slowly.  相似文献   

10.
《中国化学快报》2020,31(12):3135-3138
Fragrances are widely used in many aspects of our lives. They cannot only make people happy, but also treat many diseases. However, excessively fast evaporation rate is one of the main obstacles to the use of spices. In this study, mesoporous silica nanorods (MSNRs) and hollow mesoporous silica nanorods (HMSNRs) were prepared to encapsulate eugenol. These two nano-fragrances were named eugenol@MSNRs and eugenol@HMSNRs, respectively. The morphologies, size, interior structures and pore performances of MSNRs and HMSNRs. Besides, the performances of encapsulation and fragrance release of eugenol@MSNRs and eugenol@HMSNRs were compared and analyzed. The results showed that eugenol@HMSNRs encapsulated more fragrance and were faster to encapsulate compared with eugenol@MSNRs. Both the release rates of eugenol from eugenol@MSNRs and eugenol@HMSNRs were slow. But the eugenol was released from eugenol@MSNRs more slowly.  相似文献   

11.
The controlled release of drugs by biostimuli is highly desirable under physiological conditions for their potential use in advanced applications. The enzyme-inspired controlled release of cucurbituril nanovalves by using magnetic mesoporous silica nanoparticles (MSNs) in near-neutral aqueous solutions is reported for the first time. The encirclement of cucurbit[7]uril (CB[7]) onto the protonated 1,4-butanediamine stalks tethered to the external surfaces of superparamagnetic Fe(3) O(4) -embedded mesoporous silica particles leads to tight blocking of the nanopores. The supramolecular nanovalves are activated by the enzymatic decarboxylation products of lysine, cadaverine (in the protonated form), which has a high affinity for CB[7], so that the encapsulated guest molecules, calcein, in the nanopores are released into the bulk solution. The release of calcein can be controlled in small portions on command by alternating changes in enzymatic decarboxylation products and CB[7]. The amino acid derived polyamines have long been associated with cell growth and cancers. The guest molecules released from the delivery system of magnetic MSNs can act not only on sensing probes for levels of decarboxylases and polyamines, but also on efficacious drugs to specific tissues and cells for regulation of polyamine synthesis.  相似文献   

12.
Multifunctional mesoporous silica nanoparticles (MSNs) are good candidates for multimodal applications in drug delivery, bioimaging, and cell targeting. In particular, controlled release of drugs from MSN pores constitutes one of the superior features of MSNs. In this study, a novel drug delivery carrier based on MSNs, which encapsulated highly sensitive 19F magnetic resonance imaging (MRI) contrast agents inside MSNs, was developed. The nanoparticles were labeled with fluorescent dyes and functionalized with small molecule-based ligands for active targeting. This drug delivery system facilitated the monitoring of the biodistribution of the drug carrier by dual modal imaging (NIR/19F MRI). Furthermore, we demonstrated targeted drug delivery and cellular imaging by the conjugation of nanoparticles with folic acid. An anticancer drug (doxorubicin, DOX) was loaded in the pores of folate-functionalized MSNs for intracellular drug delivery. The release rates of DOX from the nanoparticles increased under acidic conditions, and were favorable for controlled drug release to cancer cells. Our results suggested that MSNs may serve as promising 19F MRI-traceable drug carriers for application in cancer therapy and bio-imaging.  相似文献   

13.
The mesoporous silica materials had a high loading efficiency of sirolimus-SMEDDS. The length of the mesopores played a more important role than the pore diameter in drug dissolution and in vivo absorption.  相似文献   

14.
A series of functional mesoporous silica nanoparticles(MSNs) was synthesized by a one-step simple synthesis approach involving co-condensation of tetraethoxysilane(TEOS) and salicylaldimine ligand(Sal-Si) in the presence of cetyltrimethylammonium chloride(CTAC) under basic conditions.The target MSNs with different sizes (50,100 and 200 nm,respectively) were obtained.Furthermore,the Ca^2+ cations were also introduced into MSNs.The prepared nanoparticles were characterized by means of infrared(IR) spectra,thermogravimetric analysis(TGA),inductively coupled plasma(ICP),CHN elemental analysis,nitrogen adsorption-desorption,scanning electron microscope(SEM) and transmission electron microscope(TEM).Ibuprofen(IBU) which contains carboxyl groups was selected as a model drug.The results of drug loading and release reveal that the loading capacities and release behaviors of the model drug are highly dependent on the Ca^2+ cations in MSNs.The release of IBU from the MSNs functionalized by Ca^2+ cations is found to be effectively controlled when compared to the release from the MSNs without the functionalization of Ca^2+ cations,which is due to the ionic interaction between carboxyl groups in IBU and Ca^2+ cations in MSNs.  相似文献   

15.
The importance of green synthesis was revealed with advantages such as: eliminating the use of expensive chemicals; consume less energy; and generate environmentally benign products. With this aim, silver nanoparticles (AgNPs) were synthesized by using isolated eugenol from clove extract. Its antimicrobial potential was determined on three different microorganisms. Clove was extracted and eugenol was isolated from this extract. Green synthesis was performed and an anti‐microbial study was performed. All extraction and isolation analyses were performed by high‐performance liquid chromatography (HPLC); identification and confirmation were achieved using liquid chromatography–mass spectrometry (LC–MS); and scanning electron microscopy was used for characterization. Both HPLC and LC–MS analyses showed that eugenol obtained purely synthesized AgNPs and 20‐25‐nm‐sized and homogeneous shaped particles seen in images. The antimicrobial effects of AgNPs at eight concentrations were determinated against Staphylococcus aureus, Escherichia coli and Candida albicans, and maximum inhibition zone diameters were found as 2.6 cm, 2.4 cm and 1.5 cm, respectively. The results of the antimicrobial study showed that eugenol as a biological material brought higher antimicrobial effect to AgNPs in comparison to the other materials found in the literature.  相似文献   

16.
Emulsion polymerization of ethylene from vinyl functionalized mesoporous silica nanoparticles (V‐MSNs) was reported. V‐MSNs were synthesized via deposition of vinyl monolayers on the pore walls, and the relative surface coverage of the vinyl monolayers was 74%. A fluorinated P‐O‐chelated nickel catalyst coordinated to the vinyl groups. These V‐MSNs hosting catalysts were full dispersed in water assisted by ultrasonic processor in the presence of surfactants. After addition of ethylene, polyethylene (PE) chains grew from the pores of V‐MSNs, formation of stable nanocomposite latices with solid content up to 17.3%. Our method made V‐MSNs well‐dispersed in the PE matrix. Especially, because of a strong interaction between PE and nanoparticles, a stable V‐MSNs core/PE shell structure was formed upon thermal treatment above melting temperature of the PE. Samples were analyzed by a number of techniques including TEM, N2 adsorption‐desorption, FTIR, and solid state 29Si NMR, DLS, 1H NMR, GPC, and DSC. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1393–1402, 2009  相似文献   

17.
In this study, an adjustable pH‐responsive drug delivery system using mesoporous silica nanoparticles (MSNs) as the host materials and the modified polypeptides as the nanovalves is reported. Since the polypeptide can self‐assemble via electrostatic interaction at pH 7.4 and be disassembled by pH changes, the modified poly(l ‐lysine) and poly(l ‐glutamate) are utilized for pore blocking and opening in the study. Poly(l ‐lysine)‐MSN (PLL‐MSN) and poly(l ‐glutamate)‐MSN (PLG‐MSN) are synthesized via the ring opening polymerization of N‐carboxyanhydrides onto the surface of mesoporous silica nanoparticles. The successful modification of the polypeptide on MSN is proved by Zeta potential change, X‐ray photoelectron spectroscopy (XPS), solid state NMR, and MALDI‐TOF MS. In vitro simulated dye release studies show that PLL‐MSN and PLG‐MSN can successfully load the dye molecules. The release study shows that the controlled release can be constructed at different pH by adjusting the ratio of PLL‐MSN to PLG‐MSN. Cellular uptake study indicates that the drug is detected in both cytoplasm and nucleus, especially in the nucleus. In vitro cytotoxicity assay indicates that DOX loaded mixture nanoparticles (ratio of PLL‐MSN to PLG‐MSN is 1:1) can be triggered for drug release in HeLa cells, resulting in 88% of cell killing.  相似文献   

18.
Stationary phase materials with small pore diameters are often used for the separation of copolymers according to their chemical composition. The rationale for such a column selection is to minimize the influence of the molecular weight on the separation. In this paper, we describe a detailed study of the influence of the pore size on the retention and separation of poly(methylmethacrylate) (PMMA)-poly(butylmethacrylate) copolymers. We used normal-phase (NP) and reversed-phase (RP) columns with various pore diameters, as well as non-porous columns and a monolithic column. The pore size was found to affect the separation, especially for (co-)polymer molecules with characteristic diameters that roughly correspond to the exclusion limit of the column. Also possibilities to separate block copolymers according to block length are strictly investigated. The making of one block in a di-block (DB) copolymer "invisible" can only be fulfilled if the "invisible" block does not play any role in the separation.  相似文献   

19.
Melting and freezing of water in cylindrical silica nanopores   总被引:1,自引:0,他引:1  
Freezing and melting of H(2)O and D(2)O in the cylindrical pores of well-characterized MCM-41 silica materials (pore diameters from 2.5 to 4.4 nm) was studied by differential scanning calorimetry (DSC) and (1)H NMR cryoporometry. Well-resolved DSC melting and freezing peaks were obtained for pore diameters down to 3.0 nm, but not in 2.5 nm pores. The pore size dependence of the melting point depression DeltaT(m) can be represented by the Gibbs-Thomson equation when the existence of a layer of nonfreezing water at the pore walls is taken into account. The DSC measurements also show that the hysteresis connected with the phase transition, and the melting enthalpy of water in the pores, both vanish near a pore diameter D* approximately equal to 2.8 nm. It is concluded that D* represents a lower limit for first-order melting/freezing in the pores. The NMR spin echo measurements show that a transition from low to high mobility of water molecules takes place in all MCM-41 materials, including the one with 2.5 nm pores, but the transition revealed by NMR occurs at a higher temperature than indicated by the DSC melting peaks. The disagreement between the NMR and DSC transition temperatures becomes more pronounced as the pore size decreases. This is attributed to the fact that with decreasing pore size an increasing fraction of the water molecules is situated in the first and second molecular layers next to the pore wall, and these molecules have slower dynamics than the molecules in the core of the pore.  相似文献   

20.
Thin slabs of theophylline and monomer albumin release systems were prepared by dispersing 212-300 μm and 300-25 μm particles respectively, of these bioactive agents in a methylene chloride solution of ethylene/vinyl acetate (EVAc) copolymer (40 wt% vinyl acetate), and evaporating the solvent at low temperatures according to the Langer—Folkman technique. Compositions containing 21.41 wt%, 31.04 wt% and 40.0 wt% albumin, and 19.32 wt% theophylline were prepared. Solute release experiments were performed in deionized water at 37 ± 0.1°C under perfect-sink conditions. The concentration of released solute was determined by measuring the absorbance of the UV spectra at 276 nm for albumin and 272 nm for theophylline. Both solutes could be released for long periods of time at controlled rates. The main mechanism of release was established to be solute dissolution and diffusion through the generated, waterfilled pore structure. Photomicrographs present the main features of this pore network. Mercury porosimetry was used to determine the pore volume and size of pores for freezedried slabs before, during and after the dissolution/diffusion/release process. Considerable pore collapse was observed and pore diameters of 8-650 μm were detected. In addition to solution diffusion through large pores, diffusion might occur through small constrictions between large pores or through a pore network of much smaller pores created in the matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号