首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
结合电子转移活化剂再生-原子转移自由基聚合(ARGET ATRP)和开环聚合(ROP)法合成了一种具有无规疏水/ pH 响应结构的两亲性聚合物分子刷聚(甲基丙烯酸聚丙交酯酯-co-甲基丙烯酸)-b-聚甲基丙烯酸单甲氧基聚乙二醇酯 [P(PLAMA-co-MAA)-b-PPEGMA]. 通过核磁共振氢谱(1H NMR)和凝胶渗透色谱(GPC)表征了聚合物的结构、分子量及分子量分布. 优化了反应条件并合成出分子量可控、分子量分布窄的聚合产物. 采用动态光散射法(DLS)、扫描电子显微镜(SEM)研究了聚合物分子刷在水溶液中自组装胶束的粒径、形貌及pH 响应行为. P(PLAMA-co-MAA)-b-PPEGMA 自组装形成粒径分布均匀的球形胶束. 且随着溶液pH 值从7 降低至3, 胶束中的PMAA 逐渐去离子化, 溶胀的胶束逐渐收缩, 粒径由200~300 nm 减小至150 nm 左右; 但当pH 值减小到2 以下, 胶束表面电荷量非常小, 胶束聚集, 使得粒径增大.  相似文献   

2.
A novel, hyperbranched, amphiphilic multiarm biodegradable polyethylenimine-poly(gamma-benzyl-L-glutamate) (PEI-PBLG) copolymer was prepared by the ring-opening polymerization of gamma-benzyl-L-glutamate-N-carboxyanhydride (BLG-NCA) with hyperbranched PEI as a macroinitiator. The copolymer could self-assemble into core-shell micelles in aqueous solution with highly hydrophobic micelle cores. As the PBLG content was increased, the size of the micelles increased and the critical micelle concentration (CMC) decreased. The surface of the micelles had a positive zeta potential. The cationic micelles were capable of complexing with plasmid DNA (pDNA), which could be released subsequently by treatment with polyanions. The PEI-PBLG copolymer formed unimolecular micelles in chloroform solution. The pH-sensitive phase-transfer behavior exhibited two critical pH points for triggering the encapsulation and release of guest molecules. Both the encapsulation and release processes were rapid and reversible. Under strong acidic or alkaline conditions, the release process became partially or completely irreversible. Thus, this copolymer system should be an attractive candidate for a gene- or drug-delivery system in aqueous media and could provide the phase-transfer carriers between water and organic media.  相似文献   

3.
A series of poly(?‐caprolactone/glycolide)‐poly(ethylene glycol) (P(CL/GA)‐PEG) diblock copolymers were prepared by ring opening polymerization of a mixture of ?‐caprolactone and glycolide using mPEG as macro‐initiator and stannous octoate as catalyst. Self‐assembled micelles were prepared from the copolymers using nanoprecipitation method. The micelles were spherical in shape. The micelle size was larger for copolymers with longer PEG blocks. In contrast, the critical micelle concentration of copolymers increased with decreasing the overall hydrophobic block length. Drug loading and drug release studies were performed under in vitro conditions, using paclitaxel as a hydrophobic model drug. Higher drug loading was obtained for micelles with longer poly(ε‐caprolactone) blocks. Faster drug release was obtained for micelles of mPEG2000 initiated copolymers than those of mPEG5000 initiated ones. Higher GA content in the copolymers led to faster drug release. Moreover, drug release rate was enhanced in the presence of lipase from Pseudomonas sp., indicating that drug release is facilitated by copolymer degradation. The biocompatibility of copolymers was evaluated from hemolysis, dynamic clotting time, and plasma recalcification time tests, as well as MTT assay and agar diffusion test. Data showed that copolymer micelles present outstanding hemocompatibility and cytocompatibility, thus suggesting that P(CL/GA)‐PEG micelles are promising for prolonged release of hydrophobic drugs.  相似文献   

4.
A novel, pH-responsive supramolecular graft copolymeric micelle, composed of dextran and poly (oleic acid), has been synthesized through reversible addition fragmentation chain transfer polymerization with controlled Mn and narrow polydispersity. The structural properties of the copolymer have been studied using FTIR and 1H NMR spectral analyses. Critical micelle concentration (CMC) has been determined fluorometrically and conductometrically. The copolymer shows pH responsive micellar stability, which has been confirmed using DLS study. Dextran-g-OA copolymer demonstrates spherical morphology at CMC, while rod-like assembly has been evidenced beyond CMC that is probably because of the structural alteration of copolymeric chains at higher copolymer concentration. Dextran-g-OA is noncytotoxic toward MG-63 cells. As the self-assemble nature of copolymer micelle promotes the oral administration of hydrophobic drugs, nifedipine (NFD, a hydrophobic drug) has been used as model drug that has been encapsulated substantially into the core of the micelle. The copolymer releases the loaded NFD at a much slower rate in simulated gastric fluid (pH 1.2) and relatively faster in simulated intestinal fluid (pH 7.4) with a cumulative release of ~95% within 24 h, suggesting an ideal candidate as nifedipine carrier. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2354–2363  相似文献   

5.
齐印  袁金芳  高青雨 《应用化学》2014,31(6):642-648
以N-异丙基丙烯酰胺(NIPAm)和双丙酮丙烯酰胺(DAAM)为原料,采用可逆加成 断裂链转移(RAFT)可控聚合反应法合成了两亲性两嵌段共聚物 聚(异丙基丙烯酰胺)-b-聚(双丙酮丙烯酰胺)(PNIPAm-b-PDAAM),用红外光谱(FT-IR)、核磁共振(1H NMR)和凝胶渗透色谱(GPC)对其结构和组成进行了表征。 这种共聚物在水溶液中能够自组装成稳定的聚合物胶束,通过荧光探针测得其低临界胶束浓度(CMC)约为7.0 mg/L。 采用扫描电子显微镜(SEM)和动态激光光散射(DLS)测得,PNIPAm-b-PDAAM在水溶液中自组装成核壳结构的球形胶束,SEM测得其直径约150 nm,且分散性良好。 以其聚合物胶束为载体、叶酸(FA)为模型药物,模拟人体生理环境进行药物体外释放。 结果表明,叶酸的负载量及负载率分别为25%和74%。 在人体温度37℃、pH值分别为4.0、6.86、9.18磷酸缓冲溶液(PBS)中,FA在20 h内的释放均比25 ℃快,释放速率随pH值增加而增大,最大累积释放率分别为31%、67%和72%。  相似文献   

6.
通过原子转移自由基聚合方法, 在丁酮/异丙醇混合溶剂中合成了分子量可控和分布较窄的聚丙烯酸叔丁酯-b-聚N-异丙基丙烯酰胺(PtBA-b-PNIPAM)嵌段共聚物, 用GPC和 1 H NMR对其结构进行了表征. PtBA-b-PNIPAM在甲苯中水解得到聚丙烯酸-b-聚N-异丙基丙烯酰胺(PAA-b-PNIPAM). 用动态光散射技术对PAA-b-PNIPAM在水溶液中的自组装行为随pH值和温度变化的响应进行了初步研究.  相似文献   

7.
制备了一种在疏水段带有侧基叠氮官能团的两亲性pH敏感的聚合物——聚己内酯-聚(甲基丙烯酸二乙氨基乙酯-磺酸甜菜碱)((PCL-ACL)-PDEAS);同时合成了两端带有炔基中间带有二硫键的交联剂,用红外、核磁表征了目标分子.通过两亲性高分子自组装形成胶束,并通过点击化学反应获得了核交联的胶束.通过动态光散射测定粒径,胶束酸碱滴定表征胶束的pH敏感性,还原条件下释放药物的速度,对比了非交联胶束和交联胶束的性质.结果表明,交联胶束在正常生理条件下的释放速度比未交联胶束更慢;而在有DTT的存在条件下,交联胶束由于二硫键断裂,释放速率明显加快.因此,核交联载药胶束有可能响应肿瘤的微环境实现靶向释放.  相似文献   

8.
pH敏感型mPEG-Hz-PLA聚合物纳米载药胶束的制备   总被引:1,自引:0,他引:1  
以合成的含有腙键的聚乙二醇大分子(mPEG-Hz-OH)为引发剂,以丙交酯为单体引发开环聚合反应,并通过调整投料比,制备出3种不同分子量的含腙键的生物可降解嵌段聚合物(mPEG-Hz-PLA).将腙键引入到聚合物的骨架中,以此构建聚合物胶束并作为pH敏感型纳米药物载体.制备的pH敏感型胶束的CMC值等于或低于5.46×10-4 mg/m L,DLS和TEM显示粒径均小于100 nm,且粒径分布均匀.非pH敏感型胶束在不同pH下的粒径变化不明显,而pH敏感型胶束在酸性环境下(pH=4.0和pH=5.0)胶束粒径出现了明显变化.以阿霉素为模型药物制备了pH敏感型载药胶束,其粒径比空白胶束大(100~200 nm),且粒径分布均匀.药物释放实验表明pH敏感型载药胶束随着释放介质pH降低累积释药量增高.MTT实验表明空白胶束对HeLa细胞和RAW264.7细胞几乎没有抑制作用,而载阿霉素的胶束对2种细胞的抑制作用都随着剂量的增大和时间的延长而增强.  相似文献   

9.
Interaction of amphiphilic poly(ethylene oxide)-b-poly(epsilon-caprolactone) copolymers with anionic sodium dodecyl sulfate (SDS) has been investigated in aqueous solution. Formation of mixed micelles has been confirmed by surface tension measurements, whereas the influence of the surfactant on the copolymer self-assembling has been studied by measurement of the 1H NMR self-diffusion coefficients and by small-angle neutron scattering. As a rule, the surfactant decreases the heterogeneity of the micellar structures formed by the copolymer in water. Moreover, increasing the content of SDS results in the increasingly more important extension of the poly(ethylene oxide) (PEO) corona chains and the copolymer micelle deaggregation. The stability of the micelles against SDS increases with the length of the hydrophobic block. Preliminary two-dimensional NMR measurements with nuclear Overhauser enhancement have confirmed the spatial vicinity between SDS and the constitutive blocks of the copolymer.  相似文献   

10.
基于PAA——PAN嵌段共聚物胶束制备磁性碳纳米粒子   总被引:1,自引:1,他引:0       下载免费PDF全文
本文采用原子转移自由基聚合方法合成了聚丙烯酸叔丁酯-聚丙烯腈嵌段共聚物(PtBA-b-PAN), 酸解得到聚丙烯酸-聚丙烯腈两亲嵌段共聚物(PAA-b-PAN). 随后, PAA-b-PAN嵌段共聚物在水溶液中自组装形成以PAA为壳, PAN为核的胶束. 用此胶束为模板, 加入FeCl3溶液后得到了壳层负载Fe3+的聚合物纳米粒子, 经230 ℃空气中预氧化, 600 ℃氮气氛煅烧, 得到了核壳结构的, 具有磁性的碳纳米粒子. 用1H NMR, IR, GPC, TGA, TEM, XRD, AGM等技术对嵌段共聚物及纳米粒子进行了表征, 结果表明纳米粒子的壳层含γ-Fe2O3, Fe2.5C混合物, 核含碳, 直径为35 ± 5 nm, 饱和磁化强度为2.16 emu/g. 在分离、吸波和传感器等方面具有潜在的应用前景.  相似文献   

11.
A novel biodegradable amphiphilic copolymer with hydrophobic poly(ε‐caprolactone) branches containing cholic acid moiety and a hydrophilic poly(ethylene glycol) chain was synthesized. The copolymer was characterized by FTIR, 1H NMR, gel permeation chromatography (GPC), differential scanning calorimetry (DSC), polarizing light microscopy (PLM), and wide‐angle X‐ray diffraction (WAXD) analysis. The amphiphilic copolymer could self‐assemble into micelles in an aqueous solution. The critical micelle concentration of the amphiphilic copolymer was determined by fluorescence spectroscopy. A nanoparticle drug delivery system with a regularly spherical shape was prepared with high encapsulation efficiency. The in vitro drug release from the drug‐loaded polymeric nanoparticles was investigated. Because of the branched structure of the hydrophobic part of the copolymer and the relatively fast degradation rate of the copolymer, an improved release behavior was observed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5256–5265, 2007  相似文献   

12.
One novel type of Y-shaped amphiphilic copolymers with two hydrophobic poly(solketal acrylate) (PSA) branches and one hydrophilic monomethoxy poly(ethylene glycol) (MPEG) block was synthesized by atom transfer radical polymerization (ATRP). These Y-shaped polymers can disperse in aqueous media to self-assemble into micellar aggregates with a spherical core-shell structure. The aqueous copolymer solutions exhibited transmittancy transition in the temperature range of 30-60 °C via optical transmittance measurements. An interesting thermo-dependent size of the micellar aggregates was observed by dynamic light scattering techniques and transmission electron microscopy, which showed that the micelle diameters were decreased with temperature increasing. The nile red release from the micelles at 25 °C and 37 °C under various pHs showed that temperature has great influence on release behavior. With good biocompatibility, the micellar aggregates formed from MPEG-block-(PSA)(2) may serve as one promising thermosensitive nanovehicle for targeted drug delivery.  相似文献   

13.
A novel biodegradable diblock copolymer, poly(L-cysteine)-b-poly(L-lactide) (PLC-b-PLLA), was synthesized by ring-opening polymerization (ROP) of N-carboxyanhydride of beta-benzyloxycarbonyl-L-cysteine (ZLC-NCA) with amino-terminated poly(L-lactide) (NH 2-PLLA) as a macroinitiator in a convenient way. The diblock copolymer and its precursor were characterized by (1)H NMR, Fourier transform infrared (FT-IR), gel permeation chromatography (GPC), and X-ray photoelectron spectroscopy (XPS) measurements. The length of each block polymer could be tailored by molecular design and the ratios of feeding monomers. The cell adhesion and cell spread on the PZLC-b-PLLA and PLC-b-PLLA films were enhanced compared to those on pure PLA film. PLC-b-PLLA can self-assemble to form micelles in aqueous media. A pyrene probe is used to demonstrate the micelle formation of PLC-b-PLLA in aqueous solution. Due to the ease of disulfide exchange with thiols, the obtained micelles are reversible shell cross-linked (SCL) micelles. The morphology and size of the micelles are studied by dynamic light scattering (DLS) and environmental scanning electron microscopy (ESEM).  相似文献   

14.
Double hydrophilic block copolymers poly(ethylene oxide)-b-polyglycidol were synthesized using living anionic polymerization. The polyglycidol blocks were made hydrophobic by the esterification of a part of hydroxyl groups with cinnamic acid, thus simultaneously attaching UV-sensitive double bonds to the polymer backbone. The block copolymers were found to spontaneously associate in aqueous solution forming well-defined micelles, where the corona of the micelles was formed of EO units and the cores consisted of hydrophobic glycidyl cinnanamate units. The critical micelle concentration was determined by light-scattering measurements and fluorescence spectroscopy. Stabilization of micelles was obtained by covalently crosslinking the cores of polyether micelles formed from amphiphilic block copolymers of the type poly(ethylene oxide)-b-poly(glycidol-co-glycidyl cinnamate) (denoted EO(113)-b-(Gl(33)-co-GlCA(33-x))). To obtain stable nanoparticles double bonds of cinnamate units contained in core were crosslinked under UV irradiation. The kinetics of the stabilization process was investigated using SEC-MALLS and UV spectroscopy. The parameters of the micelles and nanogels were calculated from the light-scattering data.  相似文献   

15.
Wang Q  Zhu L  Li G  Tu C  Pang Y  Jin C  Zhu B  Zhu X  Liu Y 《Macromolecular bioscience》2011,11(11):1553-1562
A novel type of drug carrier capable of controlled drug release is proposed. It consists of an acid-sensitive doubly hydrophilic multiarm hyperbranched copolymer with a hyperbranched polyamidoamine core and many linear poly(ethylene glycol) arms. Using pH-sensitive acylhydrazone linkages, the polymer forms unimolecular micelles that can encapsulate hydrophobic drugs. Due to their amphiphilicity, the drug-loaded unimolecular micelles can self-assemble into multimolecular micelles that show acid-triggered intracellular delivery of the hydrophobic drugs.  相似文献   

16.
聚天冬氨酸及其衍生物是一种具有良好生物相容性和可生物降解性的高分子材料, 被广泛应用于生物医药领域. 本研究通过大分子引发剂ω-胺基-α-甲氧基聚乙二醇引发N-羧基-α-氨基环内酸酐开环聚合和N-(3-氨丙基)咪唑侧基改性, 制备了一种侧链含有咪唑丙基的聚乙二醇-聚(咪唑丙基-天冬酰胺)-聚丙氨酸三嵌段共聚物. 在水溶液中, 此聚合物可自组装形成一种核-壳-冠型的三层共聚物胶束, 其中疏水性的聚丙氨酸链段自聚集形成胶束的核, 聚(咪唑丙基-天冬酰胺)链段形成具有pH-响应性的壳层, 用于包埋和释放药物, 外围的聚乙二醇链段可以提供一个稳定的水合冠层, 延长药物的体内循环时间. 利用咪唑环与游离阿霉素之间的π-π相互作用和疏水相互作用可以在自组装的过程中将阿霉素包埋到胶束内. 研究发现, 载药胶束随环境pH 值的降低药物的释放速率显著增加. 这主要是由于咪唑环在酸性条件下的质子化导致链段亲疏水性质发生明显变化.  相似文献   

17.
Comicellization of a star block copolymer poly(ε-caprolactone)-block-poly(diethylamino)ethyl methacrylate (S(PCL-b-PDEAEMA)) and a linear block copolymer methoxy poly(ethylene glycol)-block-poly(ε-caprolactone) (mPEG-b-PCL) was developed to enhance the stability and lower the cytotoxicity of the micelles. The two copolymers self-assembled into the mixed micelles with a common PCL core surrounded by a mixed PDEAEMA/mPEG shell in aqueous solution. This core-shell structure was transformed to the core-shell-corona structure at high pH due to the collapse of the PDEAEMA segment. The properties of the polymeric micelles were greatly dependent on the weight ratio of the two copolymers and the external pH. As increasing the mPEG-b-PCL content, the size and the zeta potential of the mixed micelles were lowered while the pH-dependent stability and the biocompatibility were improved. Moreover, an increase in pH accelerated the release of indomethacin (IND) from the mixed micelles in vitro. These results augured that the mixed micelles could be applied as a stable pH-sensitive release system.  相似文献   

18.
通过使用药物运载体系来提高抗菌物质的使用效率是应对抗生素耐药性的有效途径.本文报道了一种制备细菌酶响应聚合物囊泡作为"智能型"抗菌剂载体的方法.通过可逆加成-断裂链转移聚合(RAFT)制备的脂酶和硝基还原酶响应的二嵌段共聚物PEG-b-PA和PEG-b-PN,能够在水溶液中自组装形成聚合物囊泡组装体.该囊泡组装体在没有酶存在的条件下相对稳定,而在脂酶或硝基还原酶的作用下发生从囊泡到核交联胶束的形貌转变.基于这一转变过程实现了负载在囊泡中的抗菌剂(三氯生,抗菌肽Parasin Ⅰ和溶菌酶)的选择性释放,并研究了针对大肠杆菌(E.coli,革兰氏阴性菌)、金黄色葡萄球菌(S.aureus,革兰氏阳性菌)和白色念珠菌(C.albicans,真菌)的生长抑制效果.  相似文献   

19.
通过大分子引发剂ω-氨基-α-甲氧基聚乙二醇引发N-羧基-α-氨基环内酸酐开环聚合和水合肼侧基改性,制备了一系列聚乙二醇-聚氨基酸类三嵌段共聚物.其中聚氨基酸链段包括具有酰肼基的聚天冬氨酸衍生物(PAHy),以及疏水性的聚丙氨酸链段.引入具有pH响应性的腙键键合阿霉素,利用键合阿霉素与游离阿霉素之间的π-π叠合作用,在聚合物自组装形成胶束过程中通过化学键合+物理包埋的方式充分负载药物.该胶束以聚丙氨酸链段为核心,以PEG链段为冠层,以PAHy链段为包裹药物的壳层.载药胶束的粒径在170 nm左右.研究不同pH值条件下载药胶束的药物释放能力,随环境pH值的降低药物的释放速率显著增加.  相似文献   

20.
A well-defined AB diblock copolymer of 2-vinyl-4,4-dimethylazlactone (VDA) and N,N-dimethylacrylamide (DMA) was generated by reversible addition-fragmentation chain transfer (RAFT) radical polymerization. The VDA-DMA diblock copolymer was reacted with 2-(methylthio)ethylamine (MTEA) and 3-(methylthio)propylamine (MTPA) to yield two novel thioether functional diblock copolymers whose structure was confirmed using 1H NMR and FTIR spectroscopy. Both diblock copolymers formed micelles (20–30 nm) in aqueous media as confirmed by dynamic light scattering (DLS) and transmission electron microscopy. The self-assembled micelles were loaded with Nile Red, a model hydrophobic drug to study their ROS-triggered release mechanism. On addition of hydrogen peroxide (H2O2), the most common ROS species, the hydrophobic thioether core of these micelles oxidized, and both diblock copolymers became more hydrophilic. This triggered their disassembly and subsequent cargo release as characterized by UV–visible spectroscopy. The Nile Red loaded micelles demonstrated similar in-vitro ROS-mediated release when exposed to endogenous oxidants in a model inflammation environment simulated by the presence of activated macrophages. The responsive nanomaterials developed in this article have promising potential as drug carriers in applications where ROS-triggered delivery of cargo is required such as in inflammatory conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号