首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
金纳米粒子在氨基表面上的组装-pH值的影响   总被引:6,自引:0,他引:6  
用原子力显微镜(AFM)和表面增强喇曼光谱(SERS)研究了pH值对金纳米粒子在Au/巯基苯胺自组装膜表面上组装效果的影响.AFM结果表明,金纳米粒子在表面上的覆盖度随pH值表现出规律性的变化,巯基苯胺自组装膜的SERS强度随pH值的变化也有类似的趋势.在磁性环境下,氨基未质子化,金粒子难以组装上,而在酸性条件下,氨基质子化带正电,金粒子与基底容易结合.我们认为金纳米粒子和氨基之间的作用属于静电力,pH值同时影响膜表面氨基的质子化程度和金纳米粒子表面的带电量.  相似文献   

2.
介孔钛硅分子筛表面功能膜的制备及水体中铅的去除作用   总被引:1,自引:0,他引:1  
研究了制备条件对氯丙基三甲氧基硅烷在水饱和处理的介孔钛硅分子筛表面自组装作用的影响。通过亲核取代反应制备出疏基乙酰氧基功能膜。用XRD,IR,TGA,元素分析,XRF,^13C CP/MAS和^29Si CP/MAS NMR谱对功能膜进行了表征。结果表明,自组装膜的最佳制备条件为选择甲苯作溶剂,控制在110℃加热,硅烷化24h。实验表明,功能膜对水体中的Pb^2+离子具有良好的选择吸附能力,可有效  相似文献   

3.
研究了制备条件对氯丙基三甲氧基硅烷在水饱和处理的介孔钛硅分子筛表面自组装作用的影响.通过亲核取代反应制备出巯基乙酰氧基功能膜.用XRD、IR、TGA、元素分析、XRF、13CCP/MAS和29SiCP/MASNMR谱对功能膜进行了表征.结果表明,自组装膜的最佳制备条件为选择甲苯作溶剂,控制在110℃加热,硅烷化24h.实验表明,功能膜对水体中的Pb2+离子具有良好的选择吸附能力,可有效地去除水体中的痕量铅  相似文献   

4.
巯基钴卟啉自组装膜的表征及催化性能   总被引:4,自引:0,他引:4  
卢小泉  靳军  朱开梅  张焱  康敬万 《分析化学》2001,29(10):1178-1180
用自制的新型尾式巯基钴(Ⅱ)卟啉在金电极上制成自组装单分子膜,并用XPS,SEM和电化学的方法进行了表征。该膜对抗坏血酸具有良好的催化作用,其氧化过电位较裸金电极上降低了140 mV,响应电流与抗坏血酸(AA)的浓度在 7.8 × 10-5mol/L~1.0×10-2mol/L的范围内具有良好的线性关系,相关系数为 0.9981;检测下限为 1.3 × 10-8mol/L(富集 10min)。  相似文献   

5.
纳米级金膜微电极的制作,表征及异相催化反应   总被引:1,自引:0,他引:1  
报道了纳米级金膜微电极的制作方法,用XPS及SEM对电极表面进行了表征,考察了该电极的循环伏安及计时电流特性,在聚吡咯修饰微带金电极上成功地实现了葡萄糖氧化酶和电子传递媒体Fe(CN)6^3-的同时固定,并研究了GOD/Fe(CN)6^3-/PPy微酶电极对葡萄糖的响应,稳态响应电流与葡萄糖浓度之间存在Michealis-Menten动力学特征。  相似文献   

6.
TiO2纳米粒子膜的制备,表面态性质和光催化活性   总被引:3,自引:0,他引:3  
曹亚安  黄英 《催化学报》1999,20(3):353-355
在酸性和碱性条件下,用TiCl4水解法制备了TiO2纳米粒子膜催化剂。采用原子力显微镜(AFM),X射线衍射(XRD),表面光电压谱(SPS)和场诱导表面光电压谱(EFISPS)测定了催化剂表面的微结构及能级结构。  相似文献   

7.
研究了水溶性高分子与三种表面活性剂组成的复合作用体系(PAA—AM/CTAB,PAA—AM/SDS和PAA-AM/TritonX-100)中的光敏聚合反应.应用芘做荧光探针,跟踪检测在稀水溶液中分子复合和聚集的过程和微环境特性.结果表明,由水溶性高分子/表面活性剂形成的分子聚集体,具有胶束类似的催化作用,它和胶束相比,具有更高的分子聚集能力和热力学稳定性,较大的局部粘度和极性,因而对二苯酮/三乙胺引发MMA光聚合具有更为显著的催化效果,使聚合速度大幅度增加.  相似文献   

8.
研究了水溶性高分子与三种表现活性剂组成的复合作用体系(PAA-AM/CTAB,PAA-AM/SDS和PAA-AM/TritonX-100)中的光敏聚合反应,应用芘做荧光探针,跟踪检测在稀水溶液中分子复合和聚集的过程和微微环境特性,结果表明,由水溶性高分子/表面活性剂形成的分子聚集体,具有胶束类似的催化作用,它和胶束相经,具有更高的分子聚集能力和热力学稳定性,罗大的局部粘度和极性,因而对二苯酮/三乙  相似文献   

9.
系列的谪分子量水溶性丙烯酰胺/丙烯酸/2-丙烯酰胺-2-甲基丙磺酸(AM/AA/AMPS)三元共聚物(P3A)由相应的(AM/AMPS0二元共聚物通过部分水解方法制得。聚合物的结构和组成使用电位滴定和^13C-NMR谱测定,得到的结果指出,在设定的试验条件下,水解过程中,高分子链上AMPS单元具有充分的稳定性,而丙烯酰胺基平稳地转变为丙烯酸。在所有不同聚合物(P2A)情况下,由于阴离子基团的OH^  相似文献   

10.
丙炔醇聚合股对铁在酸性溶液中的缓蚀作用   总被引:1,自引:0,他引:1  
应用电化学交流阻抗谱技术研究了Fe/H_2SO_4与Fe/H_2SO_4+H_2S体系中丙炔醇(PA)聚合膜的形成及其缓蚀作用,同时利用SEM、AFM及EDX对PA聚合不同时期铁表面腐蚀形貌进行观测与成分分析.结果表明,Fe/H_2SO_4与 Fe/H_2SO_4+ H_2S体系中 PA可逐渐聚合成膜,从而有效抑制基体的腐蚀,使电极表面较为平整,微米尺度下呈现规则的块状结构;但Fe/H_2SO_4体系中宏观上PA并未形成连续的保护膜,导致电极表面局部发生腐蚀;而Fe/H_2SO_4+H_2S体系中,H_2S、HS-在电极表面的吸附减缓了PA聚合成膜,但长时间腐蚀后,由于硫化物的生成覆盖在PA聚合膜上,使其具有长期缓蚀效能.  相似文献   

11.
金纳米粒子组装结构中的表面重组现象   总被引:1,自引:0,他引:1  
以纳米粒子为基本结构单元构筑的各种二维或三维超晶格结构受到了广泛的重视[1].人们的兴趣一方面来源于在纳米尺度上控制材料结构 ,另一方面则因为组织化的纳米材料或结构具有独特的性质 ,以期在非线性光学、纳米电子学等前沿领域得到应用[2].当前研究最多的结构形式是固体表面上的纳米粒子阵列或单层薄膜 ,通常是胶体粒子靠某种特殊相互作用吸附或沉积在固体表面上(亦称为“纳米粒子在表面上的组装[3]”) ,因此对纳米粒子及固体表面进行功能化的修饰 ,从而控制纳米粒子在表面上的排列和聚集状态 ,是制备这类复合结构的核心问…  相似文献   

12.
This paper reports the findings of a detailed study of the self-assembly of gold nanoparticles at the surface of carbon nanotubes (CNTs). The study included the development of a predictive model for the interactions (charge transfer, van der Waals, osmotic, elastic, nonelastic, and covalent) between tetraoctylammonium bromide-stabilized (TOAB) gold nanoparticles and alkyl- and alkylthiol-modified multiwalled carbon nanotubes (MWCNTs). It also included the measurement of the coverage of gold nanoparticles at the surface of the above MWCNTs as a function of increasing alkyl chain length. One key finding is that it is possible to predict with a high degree of accuracy using the above model the measured coverage of gold nanoparticles adsorbed, either noncovalently or covalently, at the surface of a MWCNT. Another key finding is that, as predicted, under well-defined conditions the measured coverage of nanoparticles is very sensitive to the nature of the modified CNT surface and the contiguous environment, providing valuable insights that will underpin the rational design of functional nanoscale devices assembled from nanoparticle and CNT building blocks.  相似文献   

13.
The objective of this work is to explore approaches to enhance electrochemical signals through sequential deposition and capping of gold particles. Gold nanoparticles are electrodeposited from KAuCl4 solution under potentiostatic conditions on glassy carbon substrates. The number density of the nanoparticles is increased by multiple deposition steps. To prevent secondary nucleation processes, the nanoparticles are isolated after each potentiostatic deposition step by self‐assembled monolayers (SAMs) of decanethiol or mercaptoethanol. The increasing number of particles during five deposition/protection rounds is monitored by assembling electroactive SAMs using a ferrocene‐labeled alkanethiol. A precise estimation of the surface area of the gold nanoparticles by formation of an oxide layer on gold is difficult due to oxidation of the glassy carbon surface. As an alternative approach, the charge flow of the electroactive SAM is used for surface measurement of the gold surface area. A sixfold increase in the redox signal in comparison to a bulk gold surface is observed, and this increase in redox signal is particularly notable given that the surface area of the deposited nanoparticles is only a fraction of the bulk gold surface. After five rounds of deposition there is a gold loading of 1.94 μg cm?2 of the deposited nanoparticles as compared to 23.68 μg cm?2 for the bulk gold surface. Remarkably, however, the surface coverage of the ferrocene alkanethiol on the bulk material is only 10 % of that achieved on the deposited nanoparticles. This enhancement in signal of the nanoparticle‐modified surface in comparison to bulk gold is thus demonstrated not to be attributable to an increase in surface area, but rather to the inherent properties of the surface atoms of the nanoparticles, which are more reactive than the surface atoms of the bulk material.  相似文献   

14.
In this study, the reaction of semiconductor microrods of phase I copper 7,7,8,8-tetracyanoquinodimethane (CuTCNQ) with KAuBr(4) in acetonitrile is reported. It was found that the reaction is redox in nature and proceeds via a galvanic replacement mechanism in which the surface of CuTCNQ is replaced with metallic gold nanoparticles. Given the slight solubility of CuTCNQ in acetonitrile, two competing reactions, namely CuTCNQ dissolution and the redox reaction with KAuBr(4), were found to operate in parallel. An increase in the surface coverage of CuTCNQ microrods with gold nanoparticles occurred with an increased KAuBr(4) concentration in acetonitrile, which also inhibited CuTCNQ dissolution. The reaction progress with time was monitored using UV-visible, FT-IR, and Raman spectroscopy as well as XRD and EDX analysis, and SEM imaging. The CuTCNQ/Au nanocomposites were investigated for their photocatalytic properties, wherein the destruction of Congo red, an organic dye, by simulated solar light was found dependent on the surface coverage of gold nanoparticles on the CuTCNQ microrods. This method of decorating CuTCNQ may open the possibility of modifying this and other metal-TCNQ charge transfer complexes with a host of other metals which may have significant applications.  相似文献   

15.
Molecular dynamics simulations are used to probe the structure and stability of alkanethiolate self-assembled monolayers (SAMs) on gold nanoparticles. We observed that the surface of gold nanoparticles becomes highly corrugated by the adsorption of the SAMs. Furthermore, as the temperature is increased, the SAMs dissolve into the gold nanoparticle, creating a liquid mixture at temperatures much lower than the melting temperature of the gold nanoparticle. By analyzing the mechanical and chemical properties of gold nanoparticles at temperatures below the melting point of gold, with different SAM chain lengths and surface coverage properties, we determined that the system is metastable. The model and computational results that provide support for this hypothesis are presented.  相似文献   

16.
金纳米粒子组装体系粒子密度与SERS强度的关系   总被引:6,自引:0,他引:6  
利用纳米粒子组装技术制备出金基底/巯基苯胺自组装膜偶联层/金纳米粒子的“三明治”结构。实验结果显示,该结构对偶联层分子的喇曼光谱显示出很好的增强效应,增强因子可达10^5;在表面粒子密度(粒子覆盖度)较低时,表面增强喇曼散射(SERS)强度与表面粒子密度近似呈线性关系;随着表面粒子密度的增加,这种线性关系出现负偏差并在表面粒子密度较高区域出现一个平台;在60 ̄110nm范围内大粒径金粒子对喇曼光谱  相似文献   

17.
Gold nanoparticles were assembled on gold substrates with the self-assembled monolayer(SAM) of p-minothiophenol(PATP). AFM measurements disclose that gold nanoparticles are scattered over the surface of the substrate with a submonolayer coverage. The Raman signal of the coupling layer, the SAM of PATP, can be well observed. Potential-dependent measurements were performed to study the chemical enhancement in SERS of such a system. Based on the supposition that the direction of charge transfer is from gold nanoparticles to PATP, it is deduced that Herzberg-Teller contribution has ruled in the SERS of such a system.  相似文献   

18.
Ricin is a toxic lectin which presents a potential security threat. Its rapid detection is highly desirable. Here we present a colorimetric bioassay based on the aggregation of carbohydrate-stabilised gold nanoparticles which has been used to detect Ricinus communis Agglutinin 120 (RCA(120)) - a ricin surrogate. To achieve a stable and robust sensing system the anchor chain length and the density of the assembled carbohydrates on the gold particle surface has been examined to determine the optimal coverage for maximal aggregation with both RCA(120) and Concanavalin A (Con A) lectins. Gold nanoparticles were stabilised with either a thiolated galactose derivative (9-mercapto-3,6-diaoxaoctyl-beta-d-galactoside) or a thiolated mannose derivative (9-merapto-3,6-dioxaoctyl-alpha-d-mannoside), for RCA(120) and Con A respectively, diluted in each instance with varying ratios of a thiolated triethylene glycol derivative. Aggregation was induced with the respective cognate lectin with the reaction monitored by UV-visible spectrophotometry. The results obtained show that a particle surface with at least 7.5% galactose is required for aggregation with RCA(120) and 6% mannose coverage is required for aggregation with Con A. For each lectin the sensitivity of the assay could be controlled by adjustment of the carbohydrate density on the gold nanoparticles, but with differing results. Maximal aggregation with Con A was achieved with a monolayer consisting of 100% mannose, whereas for RCA(120) maximal aggregation occurred with 70% coverage of galactose. The limit of detection for RCA(120) using the optimally presented galactose-stabilised nanoparticles was 9 nM.  相似文献   

19.
All-atomic molecular dynamics simulations have been performed to study the interfacial structural and dynamical properties of passivated gold nanoparticles in supercritical carbon dioxide (scCO(2)). Simulations were conducted for a 55-atom gold nanocore with thiolated perfluoropolyether as the packing ligands. The effect of solvent density and surface coverage on the structural and dynamical properties of the self-assembly monolayer (SAM) has been discussed. The simulation results demonstrate that the interface between nanoparticle and scCO(2) solvent shows a depletion region due to the preclusion of SAM. The presence of scCO(2) solvent around the passivated Au nanoparticle can lead to an enhanced extension of the surface SAM. Under full coverage, the structure and conformation of SAM are insensitive to the density change of scCO(2) fluid. This simulation results clarify the microscopic solvation mechanism of passivated nanoparticles in supercritical fluid medium and is expected to be helpful in understanding the scCO(2)-based nanoparticle dispersion behavior.  相似文献   

20.
We employ a molecular mean-field theory to quantitatively understand the sizes, surfactant surface coverage, and size fluctuations of gold nanocrystals decorated with thiol surfactants of different chain lengths. Our model assumes that surfactant-coated nanoparticles are equilibrium structures. We find that packing constraints experienced by the surfactant tails are less significant for more curved (smaller) particles. This effect enables us to rationalize the experimental observations/deductions that the thiol coverage per unit area increases with decreasing particle size. The reduction of surface coverage with increasing size also explains the fact that size polydispersity increases with increasing nanoparticle size. We find that increasing the length of the surfactants results in larger nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号