首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
首先要感谢罗锦泰同志,因为在拙文第29页倒数第5行上的“我们知道氧化作用是可以理解为获得电子,而还原作用是放出电子”二句是意义不明的笔误。承他指出,请让我更正。这二句应该是“氧化作用是可以理解为还原物(剂)放出电子而被氧化,而还原作用是氧化物(剂)获得电子而被还原”。本来在普通化学变化中,氧化和还原是不可分的,有了东西被氧化就有东西被还原。因之氧化还原作用是统称。但是在电化学中,把氧化物(剂)放在正极上,还原物放在负极上,电子通过导线上由负极流向正极,于是在正极上起还原作用,这时正极本身或者正极附  相似文献   

2.
原电池负极上的副反应探析   总被引:1,自引:0,他引:1  
汪富初 《化学教育》2003,24(4):46-46,48
在原电池中 ,理论上 ,是在负极上发生氧化反应 ,在正极上发生还原反应 ,电子由负极通过外电路流向正极。但是 ,实际进行原电池的实验时 ,往往有副反应发生 ,即负极上也发生还原反应。以Cu -Zn原电池为例 ,如图 1装置 ,理论上的反应是 :负极 (Zn) :Zn%D 2e%D Zn2 +  (氧化反应 )  正极 (Cu) :2H++ 2e-H2 ↑  (还原反应 )其现象应该是 ,在正极上有气泡产生 ,而负极逐渐消耗 ,没有气泡出现。但是 ,实际上 ,正极和负极上通常都有气泡产生 ,即负极上也有氢离子得电子的副反应发生。由于副反应的存在 ,原电池的效率就大大降低了。图 1对于…  相似文献   

3.
固态锂硫电池具有高能量密度和高安全性的潜在优势,被认为是最有前景的下一代储能体系之一。虽然固态电解质的应用有效地抑制了传统锂硫电池存在的“穿梭效应”和自放电现象,固态锂硫电池仍面临着多相离子/电子输运、电极/电解质界面稳定性、化学-机械稳定性、电极结构稳定性和锂枝晶生长等关键问题亟待解决。针对以上问题,本综述对近年来固态电解质、硫基复合正极、锂金属及锂合金负极以及电极/电解质界面的研究进行了详细的论述。作为固态锂硫电池的重要组成部分,固态电解质近年来受到了研究者们的广泛关注。本文首先对在锂硫电池中得到广泛应用的聚合物基、氧化物基、硫化物基固态电解质的种类和性质进行了概述,并对其在固态锂硫电池中的最新应用进行了系统的总结。在此基础上,对以单质硫、硫化锂、金属硫化物为活性物质的复合硫正极、锂金属及锂合金负极的反应机理以及面临的挑战进行了归纳和比较,对其解决策略进行了总结和分析。此外,对制约固态锂硫电池性能的电极/电解质界面离子/电子输运以及界面相容性问题及其改性策略进行了系统的阐述。最后,对固态锂硫电池的未来发展进行了展望。  相似文献   

4.
进一步提高电池的能量密度是动力电池发展的主题和趋势,而关键材料是其基础.本文从锂离子动力电池正、负极材料,隔膜及电解液等几个方面,对锂离子动力电池关键材料的发展趋势进行评述.开发高电压、高容量的正极新材料成为动力锂离子电池比能量大幅度提升的主要途径;负极材料将继续朝低成本、高比能量、高安全性的方向发展,硅基负极材料将全面替代其他负极材料成为行业共识.此外,本文还对锂离子动力电池正极、负极材料等的选择及匹配技术、动力电池安全性、电池制造工艺等的关键技术进行了简要分析,并提出了锂离子动力电池研究中应予以关注的基础科学问题.  相似文献   

5.
非水溶剂Li-O_2电池因其高的理论能量密度,近年来备受关注。非水溶剂Li-O_2电池的典型结构为金属锂负极、含Li+的非水溶剂电解液和多孔氧气正极。目前,多数Li-O_2电池研究集中在正极的氧气电极反应;金属锂负极极强的还原性导致的副反应使Li-O_2电池中的化学和电化学反应变得更为复杂。因为,电解液和从正极扩散来的O_2都会与金属锂发生反应;锂负极上生成的副反应产物同样会扩散到正极一侧,干扰正极的O_2反应。此外,锂负极上可能生成锂枝晶,降低电池的安全性能,进而阻碍Li-O_2电池的实用化。因此,研究并解决锂负极的电化学稳定性和安全问题迫在眉睫。本文综述了近年来国内外在非水溶剂Li-O_2电池锂负极保护和修饰方面的最新研究进展,包括:可替代的对/参比电极的选择、电解液和添加剂、复合保护层与隔膜的研究、先进实验技术的开发与应用、并针对未来非水溶剂Li-O_2电池的发展进行了展望。  相似文献   

6.
运用能斯特公式探究"水果电池"正极反应原理   总被引:1,自引:0,他引:1  
以铜片为正极、锌片为负极制作了番茄水果电池,采用火焰原子吸收分光光度法测量了番茄中相关离子的含量,运用能斯特公式对番茄电池正、负极电极电势进行了计算,结果表明正极反应不是H<'+>的还原反应,而是Cu<'2+>等金属离子得电子被还原的反应.  相似文献   

7.
随着全球经济快速发展对高效绿色能源需求的不断增长,锂-硫电池因具有较高的能量密度,成为了下一代高能量密度二次电池研发的重点.然而,锂-硫电池面临的循环寿命短、库仑效率低、安全性能差、较高自放电等问题,使其目前还很难实现商品化.锂-硫电池存在的这些问题主要与正极活性硫材料的高绝缘性、放电过程中产生的多硫化物溶解于电解液、硫正极在充放电过程中的体积膨胀与收缩、以及锂负极支晶化等有关.通过从锂-硫电池硫复合正极、电解液、黏结剂和负极等4个方面综述了高比能锂-硫电池的最新研究进展,其中重点介绍了硫正极复合材料的进展情况.  相似文献   

8.
近年来,钠离子电池因其在成本和低温性能方面具有独特优势而被广泛关注.由于层状氧化物正极与锂离子电池三元正极材料类似的制备工艺被率先推出,并将其与硬碳负极搭配组建钠离子电池.但是,由于钠离子电池层状氧化物残碱高、稳定性欠缺,在长循环过程中易引发电解液氧化分解而导致电芯产气,限制了软包钠离子电池的应用.本文采用凝胶电解质策略构建了凝胶电解质软包钠离子电池,并研究了该电池的电化学性能.结果表明,凝胶电解质对抑制电芯循环产气有显著作用,同时可以提高电芯的安全性能.  相似文献   

9.
动力锂离子电池(LIB)的安全问题,尤其是热失控这一频发的安全事件严重影响乘车人员的安全以及新能源汽车的推广.本工作使用C80微量量热仪准确测量了商用锂离子电池的内在产热,通过研究分析不同质量比例的负极-电解液产热及不同质量比例的正极-负极产热,明确了LIB在热失控阶段的主要反应分为负极与电解液反应放热(130~200℃),三元镍钴锰酸锂(NCM)正极释氧与负极反应放热(200~240℃)和磷酸铁锂(LFP)正极释氧与负极反应放热(240~300℃)等.通过使用去卷积数学方法对不同质量比例的负极-电解液及不同质量比例的正极-负极产热分析研究表明,在商用锂电池注液系数条件下,电解液会优先与负极反应且被全部消耗,剩余嵌锂负极会进一步与正极反应放热,且反应热与正极材料特性密切相关.残余正极物质虽然结构坍塌仍会释氧,但由于缺少与之反应的负极或电解液,热量不会再明显增加.通过对不同荷电状态(SOC)及不同类型的锂电池主材进行产热测试,能更好地指导电极材料的改性和电池组装的开发设计,从而提高LIB整体热稳定性和安全性,最终获得整包和新能源车的安全提高.  相似文献   

10.
陈嘉嘉  陈人杰  金钟 《电化学》2023,(3):6-7+4-5
锂硫电池是指采用硫或含硫复合物作为正极,锂或含锂材料为负极,以硫-硫键的断裂/生成来实现电能与化学能相互转换的一类电池体系。由于活性物质具有质轻、多电子反应等特性,从而能够实现高达1675m Ah·g-1的理论比容量和2600 Wh·kg-1的质量比能量。这比传统的锂离子电池的能量密度高出7倍左右,极有潜力成为新一代高能量密度电化学储能体系,近年来一直是高能锂金属电池领域的研究热点之一。然而,锂硫电池的实用化依然存在着诸多问题。最为典型的是电池充放电过程中生成高阶态多硫化物(Li2Sn,8≥n≥4)溶解在电解质中导致的“穿梭效应”,继而对硫基正极、锂基负极和电解液等电池关键组成部分产生深刻影响,导致电池出现容量衰减快、库仑效率低、循环寿命短等问题。其次,硫正极必须和金属Li配对使用才能体现锂硫电池高能量密度的优势。但在实际的锂硫电池中,锂基负极的充放电效率低、循环性能差,同时存在着严重的安全隐患。这些挑战仍需科研工作者对其背后的科学问题和工程技术问题进行逐一突破。  相似文献   

11.
李婧婧  李洪基  黄强  陈哲 《化学进展》2022,34(4):857-869
钠元素在地壳中的丰度是锂元素的1000倍,资源丰富,价格低廉。同时,钠离子电池负极可采用廉价的铝箔替代铜箔,且低温特性更加优异,在能量型、备用型储能场景均具有较好应用前景,因而钠离子电池被认为是下一代大规模储能技术的理想选择之一。然而,相对锂离子而言,钠离子较大的离子半径和质量极大限制了其在电极材料中的可逆脱嵌,导致电池的工作电压和能量密度相对较低。在钠离子电池材料体系中,正极材料的研究尤为需要长足的进步。本文对现有的典型钠离子电池正极材料进行了综述,包括层状金属氧化物、聚阴离子化合物和普鲁士蓝类化合物,并重点分析了掺杂对钠离子电池正极材料性能的影响。通过元素掺杂可提高材料的循环可逆性、增加其可逆容量、提升钠离子扩散动力学性能,能够在一定程度上改变晶格的性质,增强晶格稳定性、电子导电性、钠离子嵌脱动力学性能等。本文总结了掺杂应用在现有材料中获得的成果,并对正极材料未来的研究方向以及发展前景提出了展望。  相似文献   

12.
周兰  余爱水 《电化学》2015,21(3):211-220
二次锂硫电池被视为最具有发展潜力的下一代高能量密度二次电池之一. 但由于正极硫的电导率低(5×10-30 S·cm-1),且在放电过程中产生的中间体多硫化物易溶于有机电解液,致使锂硫电池活性物质利用率降低,溶解后的多硫化物还会迁移到负极,被还原成不溶物Li2S2/Li2S而沉积于负极锂,使电极结构遭受破坏,造成电池容量大幅衰减,循环性能差,从而限制了进一步的开发应用. 研究表明,以碳作为导电骨架的硫碳复合正极材料能在不同程度上解决上述问题,从而有效提高了锂硫电池的放电容量和循环性能. 本文综述了近年来国内外报道的各种锂硫电池正极材料的研究进展,结合作者课题组的研究,重点探讨了硫碳复合正极材料,并对其今后的发展趋势进行了展望.  相似文献   

13.
随着人们对电子通讯器件、新能源汽车以及电网级储能技术的需求日益增长,开发安全、高效且兼具环保、低成本等优点的二次电池显得至关重要。近年来,水系锌离子电池因其高安全性、高容量、低成本以及环境友好等优点受到了广泛关注。在与锌负极相匹配的众多正极材料中,具有多电子转移特性的钒基和锰基材料表现出了广阔的应用前景。然而这些正极材料在电池循环过程通常面临着结构坍塌、组分溶解、衍生副反应、反应动力学缓慢等问题,严重制约了其商业化进程。近年来,大量研究表明,客体离子或分子预嵌正极宿主结构可以有效缓解上述问题,提升水系锌离子电池正极材料的电化学性能。本文综述了客体预嵌策略应用于水系锌离子电池钒、锰基正极材料的研究进展,对该策略所解决的问题以及其局限性进行了讨论和总结,并对未来水系锌离子电池钒基和锰基正极材料的研究发展方向进行了展望。  相似文献   

14.
锂离子电池是目前电脑、通讯、消费电子品以及未来电动车动力系统的主要能源。硅基负极材料因其具有较高理论比容量(4200 mAh·g-1,为石墨10倍以上),被视为最理想的下一代锂离子电池负极材料。然而硅负极在充放电过程中巨大的体积膨胀造成极片材料的粉化脱落、SEI膜的持续增长、正极锂离子的不断消耗,以及现有商业化粘结剂与硅表面较弱的相互作用等诸多缺陷,造成电池容量快速的衰减,阻碍了硅基材料在锂离子电池中的商业化应用。本文对硅基负极材料及其相关电池材料,如硅材料结构、粘结剂、电解液及添加剂等,进行了系统全面的总结。最后对硅基材料目前研究进展和未来发展方向做出总结与评述,以期为下一代硅基电池体系发展提供参考。  相似文献   

15.
采用原位生长NiS的泡沫镍NiS@Ni(NNF)和铜箔分别作为硫@微孔碳(S@MC)正极材料的集流体, 0.4 mol/L(PhMgCl)2-AlCl3+1.0 mol/L LiCl “二代镁锂混合”作为电解液, 测试了镁硫电池恒电流和不同倍率下的充放电性能, 分析了2种不同的集流体在涂覆相同正极材料下对镁硫电池性能影响的原因. 研究发现, 采用铜箔集流体的镁硫电池循环后正极极片上观察到明显的裂缝, 镁负极表面有分布不均匀的附着物, 硫含量略高. 采用NNF为集流体时, 由于泡沫镍具有缓冲硫正极体积变化的孔道结构, 正极极片能基本保持原本的形貌; 特别是在NNF上原位生长的NiS可电催化加速多硫化物中间体的转化, 减少多硫化物的生成并减缓其穿梭, 不干扰镁负极上发生的电化学反应, 使镁负极极片表面更为均匀, 明显改善了镁硫电池的循环稳定性和倍率性能.  相似文献   

16.
高温锂电池是热电池向中低温度范围的拓展和延伸,在石油、天然气及地热探测等领域有很好的应用前景。相对于具有大比容量和接近纯锂电极电位的锂合金负极材料,正极材料还有不小的发展潜力。因此,正极材料是提升高温锂电池性能的关键材料。而在正极材料中,氧化物材料表现出高电压特性以及高热稳定性,可以推动高温锂电池小型化发展,满足特定条件下的电流电压供给。目前,并没有针对高温锂电池氧化物正极材料的系统性综述。为了促进本领域的快速发展,优化能源结构,本文系统总结了高温锂电池过渡族金属氧化物正极材料的研究进展,包括其物理特性、电化学特性及合成与制备方法,对材料的可利用特性以及不足之处加以说明;进而对氧化物正极材料在高温锂电池领域的应用做出展望。  相似文献   

17.
高温锂电池是热电池向中低温度范围的拓展和延伸,在石油、天然气及地热探测等领域有很好的应用前景。相对于具有大比容量和接近纯锂电极电位的锂合金负极材料,正极材料还有不小的发展潜力。因此,正极材料是提升高温锂电池性能的关键材料。而在正极材料中,氧化物材料表现出高电压特性以及高热稳定性,可以推动高温锂电池小型化发展,满足特定条件下的电流电压供给。目前,并没有针对高温锂电池氧化物正极材料的系统性综述。为了促进本领域的快速发展,优化能源结构,本文系统总结了高温锂电池过渡族金属氧化物正极材料的研究进展,包括其物理特性、电化学特性及合成与制备方法,对材料的可利用特性以及不足之处加以说明;进而对氧化物正极材料在高温锂电池领域的应用做出展望。  相似文献   

18.
全固态无负极锂金属电池(AFSSLB)是一种通过初次充电形成金属锂负极的新型锂电池,它的负极与正极容量比为1,能使任意锂化正极系统达到最大能量密度。无机固态电解质的引入使无负极锂金属体系兼具高安全性。然而,电池循环过程中的锂离子通量不均导致的界面接触损失和锂枝晶生长会不断加剧,从而造成电池循环容量迅速衰减。本文构筑了纳米化的银碳复合集流体,显著增强了全固态无负极锂金属电池中集流体-电解质界面的性能。使用该集流体的固态电池循环过程中接触良好,界面阻抗为~10?·cm-2。从而实现了超过7.0mAh·cm-2锂金属的均匀稳定沉积,并在0.25mA·cm-2的电流条件下实现循环200次以上。  相似文献   

19.
黄征  池波  蒲健  李箭 《化学进展》2013,(Z1):260-269
以锂为负极,空气为正极的锂-空气二次电池,由于其较高的理论能量密度(5 210 Wh.kg-1)而成为最具发展潜力的新型高能化学电源体系。通过近几年的研究和开发,人们对这一体系的了解不断深入。虽然对其电化学过程中的复杂反应机理尚没有完整系统的理论描述,但是在氧还原催化剂、空气电极材料及电解质材料等方面已开展了一些研究工作。本文综述了锂-空气电池的最新研究进展,对电池的正极材料、电解质和负极材料三个方面的研究进行了介绍,分析了该体系的缺陷及存在的问题,并展望了锂-空气电池的发展方向和前景。  相似文献   

20.
随着电子设备和电动汽车对储能设备性能要求的不断提高,锂硫电池因其多电子转化化学赋予的高能量密度受到广泛关注.当前锂硫电池的实用化受到库伦效率低、正极容量快速衰减、负极循环性能差等问题的制约.针对锂硫电池上述瓶颈,设计多功能电解质系统有望大幅提升活性材料的利用效率及循环寿命.本文综述了近年来锂硫电池中多功能隔膜系统的研究进展,具体包括面向抑制副反应的选择性透过隔膜、面向正极的低界面电阻隔膜以及面向稳定负极界面的隔膜.并展望了锂硫电池多功能隔膜系统面临的科学挑战与未来发展的机遇.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号