首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluorescent dye labeled unfunctionalized and functionalized poly(n-butylcyanoacrylate) nanoparticles were prepared using a miniemulsion technique. Amino acid and methoxyPEG functionalization could be introduced by using aqueous solutions as an initiator for the anionic polymerization in the heterophase. All the particles prepared had sizes smaller than 250 nm and negative zeta-potentials. The molar mass distribution of the polymer was dependent on the acid used as the continuous phase and the initiator solution applied. Cells of three lines (HeLa, Jurkat and mesenchymal stem cells) were incubated with the particles. The molar mass of the polymer determined the onset and extent of apoptosis, and the total uptake was determined by the size and functionalization of the particles. Different uptake kinetics were obtained with HeLa and Jurkat cells after incubation with the same particle batch. The intracellular particle distribution, visualized by confocal laser scanning microscopy, did not show significant differences for either of the cell lines or particle batches.  相似文献   

2.
A model system for multicompartment nanofibers was fabricated by colloid electrospinning. The obtained nanostructured material consisted of fluorescent polymer nanoparticles that were synthesized in a miniemulsion and then embedded in fluorescently labeled polymer nanofibers. Because of the absence of contrast between both polymers, the immobilized nanoparticles cannot be reliably identified in the nanofibers via electron microscopy or other techniques. Here, we describe investigations on the hybrid material with two-color STED microscopy to localize the nanoparticles and to quantify their distribution along nanofibers with particle and fiber radii down to 50 nm.  相似文献   

3.
Inorganic/organic nanocomposite systems, in which inorganic particles are encapsulated into the polymer matrix, are new classes of polymeric materials. These materials combine the properties of both components. It means that polymer component with excellent optical property, flexibility and toughness could improve the brittleness of inorganic particles and besides, inorganic particles could increase the strength and modulus of polymers. There are various methods to make these inorganic/organic nanocomposites. One of them is the chemical process, in which polymerization is performed directly in the presence of the inorganic particles. Examples of miniemulsion, suspension or dispersion polymerization can be found in the literature but emulsion polymerization is by far the technique most frequently used.In this work, latex containing nanostructure hybrid of copolymer (styrene, methyl methacrylate, acrylic acid) and inorganic nanoparticles (silica) with core/shell structure was prepared via semi-batch emulsion polymerization. At first, silica nanoparticles were dispersed in water phase in an ultrasound bath to prevent the aggregation of nanoparticles, and then emulsion polymerization was performed in the presence of silica nanoparticles. Related tests and analysis confirmed the success in synthesis of nanostructure hybrids. Induced coupled plasma (ICP) analysis and thermal gravimetric analysis (TGA) showed the presence and amount of silica nanoparticles in the final latex. Dynamic light scattering (DLS) analysis confirmed the presence of 25-35 nm particles in the system and transmission electron microscopy (TEM) showed the core/shell morphology of nanoparticles. It has been shown that with an appropriate surfactant, adjusting the pH of media, using suitable monomers and under controlled conditions, it would be possible to produce stable organic/inorganic composite nanoparticles with core/shell structure. In another attempt and in order to investigate the effect of compatiblizing system, styrene-methyl methacrylate was copolymerized in the presence of modified silica particles with oleic acid as the inorganic dispersed phase at the same condition. Similar characterizations were performed in order to have a worthwhile comparison. The results for the late procedure show the effect of oleic acid in formation of aggregates as the core for polymeric nanocomposite particles.  相似文献   

4.
Due to the existing interest in new hybrid particles in the colloidal range based on both magnetic and polymeric materials for applications in biotechnological fields, this work is focused on the preparation of magnetic polymer nanoparticles (MPNPs) by a single-step miniemulsion process developed to achieve better control of the morphology of the magnetic nanocomposite particles. MPNPs are prepared by surfactant-free miniemulsion polymerization using styrene (St) as a monomer, hexadecane (HD) as a hydrophobe, and potassium persulfate (KPS) as an initiator in the presence of oleic acid (OA)-modified magnetite nanoparticles. The effect of the type of cross-linker used [divinylbenzene (DVB) and bis[2-(methacryloyloxy)ethyl] phosphate (BMEP)] together with the effect of the amount of an aid stabilizer (dextran) on size, particle size distribution (PSD), and morphology of the hybrid nanoparticles synthesized is analyzed in detail. The mixture of different surface modifiers produces hybrid nanocolloids with various morphologies: from a typical core-shell composed by a magnetite core surrounded by a polymer shell to a homogeneously distributed morphology where the magnetite is uniformly distributed throughout the entire nanocomposite.  相似文献   

5.
Sub-micron sized polystyrene particles containing magnetite more than 30 wt.% were prepared by miniemulsion polymerization with commercially available ferricolloid. The effects of some water-soluble initiators and/or oil-soluble initiators on the particles characteristics, such as the size, morphology, magnetic properties and colloidal stability, were studied. The size of monomer droplets/polymer particles increased from 60 to 300 nm during polymerization, keeping magnetic in core when potassium persulfate (KPS) or ammonium persulfate (APS) was used as the sole initiator. These particles were easily separated from the medium within short time scale in external magnetic field, while such characteristics were controlled by the amount of persulfate used for the polymerization. In contrast, when 2,2′-azobis isobutyronitrile (AIBN) was used as the initiator, the size of droplets/particles was retained to be 90 nm at the most and magnetite nanoparticles located at the surface of polystyrene particles, which were so colloidally stable that they were not separated in external magnetic field. The above-mentioned effect of initiators on particle size in persulfate system was likely originated from the decrease of pH value and the increase of ionic strength, which induced the fusion of droplets/particles containing magnetite. Mixed-initiators system resulted in intermediate characteristics, compared with each initiator system. The location of magnetite in the particle seems to depend on where initiation/polymerization occurred in each initiator system.  相似文献   

6.
Tiopronin-coated silver particles (average diameters of core = 1.6 nm) were prepared by a modified Brust method, and the ligands on the metal core were partially displaced by (2-mercapto-propionylamino) acetic acid-2,5-dioxo-pyrrolidin-1-ylester through ligand exchanges. The particles were bound on amine-pendent polymer backbones by condensation to generate compact aggregates of particles. The aggregated particles displayed a plasmon absorbance rising at 440 nm. Luminescence was enhanced to about 2 times with increasing the plasmon rising by the particle aggregation upon excitation at 400 nm when the polymer was labeled by 3,8-diamino-6-phenyl-phenanthridine.  相似文献   

7.
Polymer/SiO2 nanocomposite microspheres were prepared by double in situ miniemulsion polymerization in the presence of methyl methacrylate, butyl acrylate, γ‐methacryloxy(propyl) trimethoxysilane, and tetraethoxysilane (TEOS). By taking full advantage of phase separation between the growing polymer particles and TEOS, inorganic/polymer microspheres were fabricated successfully in a one‐step process with the formation of SiO2 particles and the polymerization of organic monomers taking place simultaneously. The morphology of nanocomposite microspheres and the microstructure, mechanical properties, thermal properties, and optical properties of the nanocomposite films were characterized and discussed. The results showed that hybrid microspheres had a raspberry‐like structure with silica nanoparticles on the shells of polymer. The silica particles of about 20 nm were highly dispersed within the nanocomposite films without aggregations. The transmittance of nanocomposite film was comparable to that of the copolymer film at around 70–80% from 400 to 800 nm. The mechanical properties and the fire‐retardant behavior of the polymer matrix were improved by the incorporation of silica nanoparticles. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3128–3134, 2010  相似文献   

8.
The synthesis of stable dispersions of hybrid colloids comprising copolymers of biocompatible 2-hydroxyethyl methacrylate (HEMA) and zwitterionic, biomimetic 2-methacryloyloxyethyl phosphorylcholine (MPC) incorporating antibacterial AgBF(4) by inverse miniemulsion is described. The prepared hybrid colloids were designed to provide both antibacterial and antifouling properties for the formation of interesting, multifunctional films. The obtained particles had sizes in the range of 130-160 nm with two different weight ratios of MPC to HEMA (1:10 and 2:5) and AgBF(4) contents between 0% and 15%. The silver salt takes on the role of the lipophobe in stabilizing the miniemulsion droplets against Ostwald ripening and is reduced after polymerization to Ag nanoparticles by gaseous hydrazine. Subsequently, the hybrid particles are transformed into smooth and stable films with thicknesses between 145 and 225 nm by simple drop casting and solvent annealing. The dispersions and films were thoroughly characterized by DLS, TEM, SEM, EDX, TGA, UV-vis spectroscopy, ICP-OES, XRD, AFM, and contact angle measurements. After immersion into water, the films did not show detectable leakage of silver, so they could be employed as dual-functional antifouling and antibacterial coatings.  相似文献   

9.
Hybrid nanobeads containing either a manganese-oxo or manganese-iron-oxo cluster have been prepared via the miniemulsion polymerization technique. Two new ligand substituted oxo clusters, Mn(12)O(12)(VBA)(16)(H(2)O)(4) and Mn(8)Fe(4)O(12)(VBA)(16)(H(2)O)(4) (where VBA = 4-vinylbenzoate), have been prepared and characterized. Polymerization of the functionalized metal-oxo clusters with styrene under miniemulsion conditions produced monodispersed polymer nanoparticles as small as ~60 nm in diameter. The metal-oxo polymer nanobeads were fully characterized in terms of synthetic parameters, composition, structure, and magnetic properties.  相似文献   

10.
Phosphonate-functionalized polymer nanoparticles were synthesized by free-radical copolymerization of vinylphosphonic acid (VPA) with styrene or methyl methacrylate (MMA) using the miniemulsion technique. The influence of different parameters such as monomer and surfactant type, amount of vinylphosphonic acid on the average particle size, and size distribution was studied using dynamic light scattering and transmission electron microscopy. Depending on the amount and type of the surfactant used (ionic or non-ionic), phosphonate-functionalized particles in a size range from 102 to 312 nm can be obtained. The density of the phosphonate groups on the particle surface was higher in the case of using MMA as a basis monomer than polystyrene. The kinetic behavior of VPA copolymerization with styrene or MMA using a hydrophobic initiator was investigated by reaction calorimetry. Different kinetic curves were observed for miniemulsion (co)polymerization of styrene- and MMA-based nanoparticles indicating different nucleation mechanisms.  相似文献   

11.
In the present work, guar gum nanospheres containing tamoxifen citrate (TC) were prepared and characterized for using it as a carrier for targeted drug delivery. Tamoxifen is a non steroidal drug used in the treatment of breast cancer. The compound administered to patients is the citrate salt of the trans isomer, tamoxifen citrate. Single step emulsion in situ polymer crosslinking technique was employed to prepare polymer coated drug nanoparticles. Model polymer used in this study was guar gum, which is commonly used for colon specific drug delivery in the pharmaceutical industry. During preparation four-different drug loading solvents were tried and dichloromethane provided the best drug loading result. Briefly, 5 mg drug was dissolved in dichloromethane and emulsified with an aqueous solution of guar gum using span 80 as emulsifier. Cross-linking was made by the use of cross linker glutaraldehyde during the process. A core shell type particles were observed. Drug load was confirmed by FT-IR and quantitated by HPLC. Nanoparticles were further characterized for particle size and morphology. Particle size between 200 and 300 nm were obtained. Influence of process variables on the size of nanoparticles were studied. It was observed that the concentration of polymer and stabilizer determined the size of nanoparticles.  相似文献   

12.
Summary: This work aimed to produce poly(methyl methacrylate) nanoparticles for use in drug encapsulation. The polymer nanoparticles were produced using miniemulsion polymerization technique. Monomer miniemulsion showed moderate stability and polymer average particle size was about 90 nm. PMMA nanoparticles were tested for toxicity in human leukemic cell strain K562 and they did not show any adverse effect on cell viability. Therefore, poly(methyl methacrylate) nanoparticles are suitable to encapsulate antitumor agents.  相似文献   

13.
Anisotropic Janus magnetic polymeric nanoparticles are prepared via the miniemulsion polymerization of styrene and acrylic acid monomers in the presence of oleic acid‐coated magnetic nanoparticles (MNPs). The controllable phase separation between the polymer matrix and the encapsulated MNPs is a key success factor to produce Janus morphology. The effects of MNPs, 2,2′‐azobis(2‐isobutyronitrile) and sodium dodecyl sulfate contents, on the morphology, chemical composition and colloidal stability of the prepared Janus hybrid particles are investigated. Besides the determination of polymerization conversion, zeta potential, size analysis, TGA, and TEM are applied for characterization of the anisotropic particles. The results show the stable spherical Janus particles containing MNPs (15 wt % magnetic content) located on one side of each polymer particle. The anisotropic submicron Janus magnetic polymeric particles (250 nm) can be easily separated by an external magnet. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4779–4785  相似文献   

14.
细乳液聚合法制备磁性复合微球及其表征   总被引:16,自引:7,他引:16  
在制备超细Fe3O4 磁性粒子的基础上 ,以 3种低分子量聚合物Disperbyk 1 0 6、Disperbyk 1 0 8和Disperbyk 1 1 1为Fe3O4 微粒在单体相中的分散稳定剂 ,采用细乳液聚合法制备了平均粒径为 3 40nm的PS Fe3O4 磁性复合微球 .详细研究了分散剂种类对细乳液聚合制备磁性复合微球的影响 ,并采用XRD、TGA和TEM等手段对磁性复合微球的形态、结构及磁响应性等进行了表征 .实验结果证明分散剂的选择对磁性复合微球的成功制备起着至关重要的作用 ,兼具酸性和碱性功能基的分散剂Disperbyk 1 0 6具有更好的分散和稳定效果 .TEM结果表明 ,所制备的复合微球具有一些缺陷 ,而缺陷处往往是Fe3O4 磁性粒子聚集的地方  相似文献   

15.
Metal oxide (ZrO2) nanoparticle-dispersed polymer films (hybrid latex films) were prepared from polymer particles incorporating ZrO2 nanoparticles (hybrid latex dispersion). The hybrid latex dispersions were synthesized by miniemulsion polymerization. The resulting films were transparent, and they derived their properties from the ZrO2 nanoparticles. The refractive indexes of the films increased with the ZrO2 content. Surface-modified ZrO2 nanoparticles were dispersed successfully in a polymer matrix containing phosphoric acid groups, which interacts with the surfaces of the ZrO2 nanoparticles and increases the compatibility between the polymer and ZrO2.  相似文献   

16.
Stable dispersions of polyacrylonitrile (PAN) nanoparticles in the size range between 100 nm < d < 180 nm were made by polymerization in miniemulsion and characterized by dynamic light scattering, transmission electron microscopy (TEM), and wide angle X‐ray scattering (WAXS). Due to the insolubility of the polymer in its monomer, such particles are not accessible by classical emulsion polymerization. The pure PAN particles are composed of ca. 10 nm large polymer nanocrystals, i. e., the formed polymer precipitates and crystallizes direct after formation. As a consequence, the final latexes do not adopt spherical shape, but show a well defined, narrowly distributed boulder‐like phenotype which is called “crumpled latexes”. Copolymerization with styrene results in a continuous transition between the crumpled and a smooth spherical morphology, which is again related to a decreased degree of crystallinity.  相似文献   

17.
Summary: A new route was employed to produce composite polymer nanoparticles. First, a model polymer (a low molecular-weight polyisobutene) was dissolved in a model monomer (styrene) and then the solution was emulsified in water containing a pair of nonionic surfactants via a transitional phase inversion route. After phase inversion, which produced an oil-in-water miniemulsion, polymerisation of the vinyl monomer gave composite polymer particles. Low temperature emulsification was not practical because the inverted oil-in-water emulsions reinverted to water-in-oil emulsions upon raising the temperature to the reaction temperature. Miniemulsions prepared at the reaction temperature with low monomer content in the oil phase showed good stabilty in the course of polymerisation and produced latexes with a particle size similar to the size of drops in the initial miniemulsions.  相似文献   

18.
Nanoparticles consisting of a photoreactive polymer able to radically switch its hydrophobicity are successfully prepared by miniemulsion polymerization. Irradiation with UV light causes degradation of the particles whereat complete dissolution is achieved by changing the initial hydrophobic photoresist polymer into hydrophilic poly(methacrylic acid). Incorporation of the fluorescence‐sensitive Nile red serves as a solvatochromic probe to study the particle degradation. Diffusion of either Nile red out from or water into the former hard spherical nanoparticles is studied and not only renders the described material an ideal system for applications, where in situ dissolution of nanoparticles may be needed, but also bears the additional advantage of performing controlled burst release.  相似文献   

19.
Polychloromethylstyrene nanoparticles of sizes from 12.0 ± 2.3 to 229.6 ± 65 nm were prepared by the emulsion and miniemulsion polymerization of chloromethylstyrene in an aqueous continuous phase in the presence of potassium persulfate as initiator, sodium octylbenzenesulfonate as surfactant, and hexadecane as costabilizer for the miniemulsion polymerization process only. The influence of various polymerization parameters (e.g., concentration of the monomer, initiator, the crosslinker monomer, and the surfactant) on the properties of the particles (e.g., size, size distribution, and yield) has been elucidated. The polychloromethylstyrene nanoparticles formed via the emulsion polymerization mechanism possess smaller diameter and size distribution than those formed under similar conditions via the miniemulsion polymerization mechanism. Other differences between these two polymerization mechanisms have also been elucidated. For future study, we wish to use these nanoparticles for the covalent immobilization of bioactive reagents such as proteins to the surface of these nanoparticles for various biomedical applications.  相似文献   

20.
Poly(vinyl acetate) (PVAc) nanoparticles containing antibiotic have been prepared by miniemulsion polymerization. To compare the effect of hydrophobe types, hexadecane and poly(vinyl acetate) were used as hydrophobe. The particle characteristics as the manufacturing condition were examined by particle size analyzer. As a result, the diameter of PVAc latexes was adjusted between 80 and 260 nm by homogenization conditions and amounts of surfactant. Also, the miniemulsion by using hexadecane showed the more long shelf stability and led to the more small particle size after polymerization, as compared with the case of using poly(vinyl acetate). This indicated that the use of poly(vinyl acetate) as a hydrophobe could not make the stable emulsion, but it could avoid volatile organic chemical problems in the final product. From the release profile of drug through UV spectra, the drug release was very slow and it could be seen that the release of drug encapsulated with PVAc was occurred with the polymer degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号