首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adsorption of Pb(II), Sr(II), and Cs(I) on fumed silica, alumina, titania, silica/titania (ST), silica/alumina (SA), and alumina/silica/titania (AST) reveals that mixed oxides containing titania have a greater adsorptive capability in respect to metal cations than individual and SA oxides. Pyrocarbon deposits on fumed oxides enhance the adsorption of metal ions. Calculations of electrophoretic potential (ζ) with consideration for the porosity of aggregates of primary particles of AST show a significant influence of surface alumina (at pH<8) and titania and silica (at pH>8) on the ζ values. The effective diameter of particles (Def) of fumed oxides in aqueous media depends on pH for AST stronger than for ST (between isoelectric points (IEPs) of titania and alumina). A significant difference in the pH values of IEP and point of zero charge is observed for AST samples. A pyrocarbon influence on the ζ potential depends on the type of oxide matrix, since ζ increases for certain samples but for others it decreases. These changes depend nonlinearly on pH as well as the secondary particle size distributions (SPSDs) and Def.  相似文献   

2.
A variety of fumed oxides such as silica, alumina, titania, silica/alumina (SA), silica/titania (ST), and alumina/silica/titania (AST) were characterized. These oxides have different specific surface areas and different primary particle composition in the bulk and at the surface. These materials were studied by FTIR, NMR, Auger electron spectroscopy, one-pass temperature-programmed desorption with mass spectrometry control (OP TPDMS), microcalorimetry, and nitrogen adsorption. Nonlinear changes in the surface content of alumina in SA and AST and titania in ST and AST samples with increasing oxide content along with simultaneous changes in their specific surface area cause complex dependencies of the heat of immersion in water and desorption of water on heating on the structural parameters. Simultaneous analysis of changes in the surface phase composition, in the concentration of hydroxyls, and in the structural characteristics reveals that at a low content of the second phase the structural characteristics (e.g., S(BET)) are predominant; however, at a large content of these oxides the phase composition plays a more important role.  相似文献   

3.
Several series of fumed silicas and mixed fumed oxides produced and treated under different conditions were studied in gaseous and liquid media using nitrogen and water adsorption-desorption, mass spectrometry, FTIR, NMR, thermally stimulated depolarization current (TSDC), photon correlation spectroscopy (PCS), zeta potential, potentiometric titration, and Auger electron spectroscopy methods. Aggregation of primary particles and adsorption capacity (Vp) decrease and hysteresis loops of nitrogen adsorption-desorption isotherms becomes shorter with decreasing specific surface area (S(BET)). However, the shape of nitrogen adsorption-desorption isotherms can be assigned to the same type independent of S(BET) value. The main maximum of pore size distribution (gaps between primary nonporous particles in aggregates and agglomerates) shifts toward larger pore size and its intensity decreases with decreasing S(BET) value. The water adsorption increases with increasing S(BET) value; however, the opposite effect is observed for the content of surface hydroxyls (in mmol/m2). Associative desorption of water (2(SiOH)-->SiOSi+H2O) depends on both the morphology and synthesis conditions of fumed silica. The silica dissolution rate increases with increasing S(BET) and pH values. However, surface charge density and the modulus of zeta-potential increase with decreasing S(BET) value. The PCS, 1H NMR, and TSDC spectra demonstrate rearrangement of the fumed silica dispersion depending on the S(BET) value and the silica concentration (C(SiO2)) in the aqueous suspensions. A specific state of the dispersion is observed at the C(SiO2) values corresponding to the bulk density of the initial silica powder.  相似文献   

4.
Morphological, structural, adsorption, and catalytic properties of highly disperse titania prepared using sulfate and pyrogenic methods, and fumed titania-containing mixed oxides, were studied using XRD, TG/DTA, nitrogen adsorption, (1)H NMR, FTIR, microcalorimetry on immersion of oxides in water and decane, thermally stimulated depolarization current (TSDC) and catalytic photodecomposition of methylene blue (MB). Phase composition and aggregation characteristics of nanoparticles (pore size distribution) of sulfate and pyrogenically prepared titania are very different; temperature dependent structural properties are thus very different. Catalytic activity for the photodecomposition of MB is greatest (per gram of TiO(2) for the pure oxide materials) for non-treated ultrafine titania PC-500, which has the largest S(BET) value and smallest particle size of the materials studied. However, this activity calculated per m(2) is higher for PC-105, possessing a much smaller S(BET) value than PC-500. The activity per unit surface area of titania is greatest for the fumed silica-titania mixed oxide ST20. Calcination of PC-500 at 650 degrees C leads to enhancement of anatase content and catalytic activity, but heating at 800 and 900 degrees C lowers the anatase content (since rutile appears) and diminishes catalytic activity, as well as the specific surface area because of nanoparticle sintering.  相似文献   

5.
Fumed oxide alumina/silica/titania was studied in comparison with fumed alumina, silica, titania, alumina/silica, and titania/silica by means of XRD, 1H NMR, IR, optical, dielectric relaxation, and photon correlation spectroscopies, electrophoresis, and quantum chemical methods. The explored Al2O3/SiO2/TiO2 consists of amorphous alumina (22 wt%), amorphous silica (28 wt%), and crystalline titania (50 wt%, with a blend of anatase (88%) and rutile (12%)) and has a wide assortment of Brønsted and Lewis acid sites, which provide a greater acidity than that of individual fumed alumina, silica, or titania and an acidity close to that of fumed alumina/silica or titania/silica. The changes in the Gibbs free energy (ΔG) of interfacial water in an aqueous suspension of Al2O3/SiO2/TiO2 are close to the ΔG values of the dispersions of pure rutile but markedly lower than those of alumina, anatase, or rutile covered by alumina and silica. The zeta potential of Al2O3/SiO2/TiO2 (pH of the isoelectric point (IEP) equals ≈3.3) is akin to that of fumed titania (pH(IEPTiO2) ≈ 6) at pH > 6, but it significantly differs from the ζ of fumed alumina (pH(IEPAl2O3) ≈ 9.8) at any pH value as well as those of fumed silica, titania/silica, and alumina/silica at pH < 6. The particle size distribution in the diluted aqueous suspensions of Al2O3/SiO2/TiO2 studied by means of photon correlation spectroscopy depends relatively slightly on pH in contrast to the titania/silica or alumina/silica dispersions. Theoretical calculations of oxide cluster interaction with water show a high probability of hydrolysis of Al–O–Ti and Si–O–Ti bonds strained at the interface of alumina/titania or silica/titania due to structural differences in the lattices of the corresponding individual oxides. Ab initio calculated chemical shift δH values of H atoms in different hydroxyl groups at the oxide clusters and in bound water molecules are in agreement with the 1H NMR data and show a significant impact of charged particles (H3O+ or OH) on the average δH values of water droplets with (H2O)n at n between 2 and 48.  相似文献   

6.
Fumed oxides, such as silica, alumina, titania, and mixed X/silicas (X=Al2O3 (AS), TiO2 (TS), CVD-TiO2, Al2O3/TiO2 (AST)), pristine or covered by carbon deposits formed due to pyrolysis of cyclohexene, were studied using nitrogen adsorption–desorption, photon correlation spectroscopy particle sizing, and electrophoresis. A significant influence of the nature of surface-active sites and structural features of oxides (individual silica, mixed fumed, or prepared using chemical vapor deposition (CVD)) on the pyrolysis of cyclohexene is observed with respect to the pore size distributions due to differences between primary particles in aggregates and on their outer surfaces in the filling of channels by pyrocarbon, resulting also in a decrease in fractal dimension. Structural characteristics and dependences of the particle size distribution and electrokinetic potential of X/SiO2 and C/X/SiO2 on the pH of aqueous suspensions suggest that the carbon deposit covers mainly acidic sites at the X/SiO2 interfaces and X phase patches possessing catalytic activity in pyrolysis, as the negative charge of particles is reduced by pyrocarbon grafting.  相似文献   

7.
A novel sol-gel process for preparing oxides and mixed oxides sols from precipitation and peptization process is reported in this article. Inorganic salts are used as raw materials in this study. It is found that the amount of acid has great influence on the stability and particle diameter distribution of the precursor sols. Ultrasonic treatment is used to prepare alumina sol at room temperature. The result of 27AI NMR shows that there exist AI_13~(7+) species in the sol. By controlling the sol particles with narrow particle diameter distribution, alumina, titania and silica-alumina (SA) materials with narrow mesoporous distribution are formed by regular packing of sol particles during gelation without using any templates. The results also show that the structure and particle diameter distribution of precursor sol determine the final materials' texture.  相似文献   

8.
Polymethylsiloxane (PMS) hydrogel (C(PMS)=10 wt%, soft paste-like hydrogel), diluted aqueous suspensions, and dried/wetted xerogel (powder) were studied in comparison with suspensions and dry powders of unmodified and silylated nanosilicas and silica gels using (1)H NMR, thermally stimulated depolarization current (TSDC), quasielastic light scattering (QELS), rheometry, and adsorption methods. Nanosized primary PMS particles, which are softer and less dense than silica ones because of the presence of CH(3) groups attached to each Si atom and residual silanols, form soft secondary particles (soft paste-like hydrogel) that can be completely decomposed to nanoparticles with sizes smaller than 10 nm on sonication of the aqueous suspensions. Despite the soft character of the secondary particles, the aqueous suspensions of PMS are characterized by a higher viscosity (at concentration C(PMS)=3-5 wt%) than the suspension of fumed silica at a higher concentration. Three types of structured water are observed in dry PMS xerogel (adsorbed water of 3 wt%). These structures, characterized by the chemical shift of the proton resonance at delta(H) approximately 1.7,3.7, and 5 ppm, correspond to weakly associated but strongly bound water and to strongly associated but weakly or strongly bound waters, respectively. NMR cryoporometry and QELS results suggest that PMS is a mesoporous-macroporous material with the textural porosity caused by voids between primary particles forming aggregates and agglomerates of aggregates. PMS is characterized by a much smaller adsorption capacity with respect to proteins (gelatin, ovalbumin) than unmodified fumed silica A-300.  相似文献   

9.
Morphological, structural and adsorption characteristics of nanooxides (fumed individual silica, alumina and titania, and composite silica/alumina, silica/titania and alumina/silica/titania) were compared after different treatments (wetting/drying, ball-milling, suspending/drying, heating) at different temperatures (373–1173 K) using low-temperature nitrogen adsorption data. The structural characteristics such as specific surface area (S BET), pore volume (V p), pore (PSD) and particle (PaSD) size distributions (calculated using self-consisting regularization procedure with respect to both PSD and PaSD), fractality, adsorption energy distributions depend differently on heating temperature because desorption of water molecularly and dissociatively adsorbed at a surface and in bulk of primary nanoparticles occurs over a wide temperature range at different rates. These processes affect both structural and energetic characteristics of nanooxides.  相似文献   

10.
The deposition of molybdenum and vanadium oxides onto fumed silica, titania, and alumina as supports through dry milling has been carried out. The structure of prepared compositions has been investigated by means of XRD, DTA?CTG, FTIR, and UV?CVis spectroscopy, nitrogen adsorption. The deposited crystal phases are sufficiently uniformly distributed on support surface. The supported oxides are subjected to dispersion in process of milling to the state of oligomeric or isolated species. Milled bulk and deposited MoO3 (first of all, on alumina) possesses improved catalytic performance in process of epoxidation of 1-octene. Vanadium pentoxide also has higher activity in this process.  相似文献   

11.
A direct synthetic route leading to titania particles dispersed on nonporous spherical silica particles has been investigated; 5, 10, and 20% (w/w) titania/silica sols mixtures were achieved via hydrolyzation of titanium tetra-isopropxide solution in the mother liquor of a freshly prepared sol of spherical silica particles (St?ber particles). Titania/silica materials were produced by subsequent drying and calcination of the xerogels so obtained for 3 h at 400 and 600 degrees C. The materials were investigated by means of thermal analyses (TGA and DSC), FT-IR, N(2) gas adsorption-desorption, powder X-ray diffraction (XRD), and transmission electron microscopy (TEM). In spite of the low surface area (13.1 m(2)/g) of the pure spherical silica particles calcined at 400 degrees C, high surface area and mesoporous texture titania/silica materials were obtained (e.g., S(BET) ca. 293 m(2)/g for the 10% titania/silica calcined at 400 degrees C). Moreover, the materials were shown to be amorphous toward XRD up to 600 degrees C, while reasonable surface areas were preserved. It has been concluded that dispersion of titania particles onto the surface of the nonporous spherical silica particles increase their roughness, therefore leading to composite materials of less firm packing and mesoporosity.  相似文献   

12.
Hard interactions are developed on three grades of fumed silica by eliminating interparticle forces and sterically stabilizing the particles by attaching an organic coating to the surface of the particles, suspending them in an index-matching solvent and screening the electrostatics. These hard-structured particles are studied to understand the effects of the particle's microstructure on suspension properties without the influence of interparticle forces other than volume exclusion, Brownian, and hydrodynamic interactions. Light and X-ray scattering studies of low-volume-fraction suspensions suggest that the fumed silicas consist of primary particle of radius of gyration R(g1) approximately equals 16 nm and aggregate size R(g2) approximately 50 nm and mass fractal dimension D(f) approximately equals 2.2. Osmotic compressibilities of these suspensions are measured as a function of particle concentration exploring the packing mechanism of fumed silica. While there is minimal detectable change in the primary particle size, R(g2) varies by approximately 15%, providing insight into how suspension properties are related to particle size. As expected of hard particles with the same microstructure, the concentration dependence on the osmotic pressure superimposes with volume fraction of solids. The comparison of fumed-silica-suspension measurements to the known behavior of hard-sphere suspensions demonstrates the effects of particle geometry on suspension properties with indications of interpenetration of the fumed silica due to their open geometry.  相似文献   

13.
The acid properties of pure and modified silica surfaces were studied by 2-phenylethylamine (PEA) desorption in a thermogravimetric (TGA) apparatus, carrying out the experiments at different heating rates (5 < beta/(degrees C.min(-1)) < 30). The samples, containing about 13 wt % alumina, titania, and zirconia, were prepared by the sol-gel route from molecular precursors. The textural, structural, and surface properties of the materials were studied by complementary techniques (ICP, XRD, N(2) physisorption, SEM-EDS, and XPS). The chemical modification of the silica surface by enrichment with Al, Ti, or Zr, in amounts of about 90, 50, and 60% of that introduced in the preparation as determined by XPS, justified the increase of acidity of the modified silica surfaces compared with that of pure silica. The total number of strong acid sites was found to be in the order of SZ > SA > ST > S. Two different kinetic approaches were applied to the thermogravimetric data to kinetically interpret the PEA desorption from the different types of acid sites. The classical differential Kissinger model was found to be inadequate in representing the very complex situation of the acid surfaces. A more complex model is proposed by simultaneously taking into account PEA desorption from the different acid sites by a set of parallel and independent desorption reactions following Arrhenius's kinetic law. The fraction of each type of acid site on each surface and the relevant activation parameters were optimized through a computational procedure. Very good fitting of the experimental-calculated desorption profiles corroborated the validity of the model. For each surface, the acid-site energy distribution is presented and discussed in relationship to the surface composition of the oxides.  相似文献   

14.
Fumed silica Cab-O-Sil HS-5 grafted with 3-aminopropyldimethylsilyl (APDMS), butyldimethylsilyl (BDMS), octadecyldimethylsilyl (ODDMS), and trimethylsilyl (TMS) groups of different concentrations were studied using photon correlation spectroscopy, electrophoresis, potentiometric titration, and nitrogen adsorption methods. Calculations of both electrophoretic mobility and zeta potential were performed taking into consideration the topological structure of "porous" aggregates of primary particles of fumed silica using two different approaches. Changes in surface charge density and the textural, aggregative, and electrophoretic characteristics of modified silicas depend on the type of grafted OSC, its chain length, polarity, and surface concentration. Particle swarms of initial and modified silicas in aqueous suspension are typically characterized by bimodal size distributions between 20 and 300 nm (aggregates) and 1-3 microm (agglomerates of aggregates). The difference between parameter values computed according to the Smoluchowski theory and improved approaches increases with increasing pH and is concordant for both mobility and zeta potential.  相似文献   

15.
The amounts of negatively charged bovine serum albumin and positively charged lysozyme adsorbed on alumina, silica, titania, and zirconia particles (diameters 73 to 271 nm) in aqueous suspensions are measured. The adsorbed proteins change the zeta potentials and the isoelectric points (IEP) of the oxide particles. The added to adsorbed protein ratios at pH 7.5 are compared with the protein treated particle zeta potentials. It is found that the amounts of adsorbed proteins on the alumina, silica, and titania (but not on the zirconia) particle surfaces are highly correlated with the zeta potential. For the slightly less hydrophilic zirconia particles high amounts of protein adsorption are observed even under repulsive electrostatic conditions. One reason could be that the hydrophobic effect plays a more important role for zirconia than electrostatic interaction.  相似文献   

16.
Selective emitters are materials characterized by a high temperature emissivity significantly changing in different spectral regions. One of the crucial steps for the development of Thermophotovoltaic (TPV) generators is given by an optimal matching of the spectral emissivity of an IR radiation source with the spectral region where is maximum the efficiency of photovoltaic cells. The emitters should retain good structural properties at the working temperature above 1300°C and they can be either an external coating for the a burner or, as a structural material, a burner and emitter at once.In this work, oxide glass and ceramics containing rare earths have been prepared and characterized as selective emitters candidates. Different approaches and materials have been attempted all based on a colloidal route. Rare earths oxides (erbium and holmium) have been incorporated in transparent silica glass and in polycrystalline alumina and zirconia using their hydrated salts as oxide precursors. Rare earth modified silica glass were obtained by sintering silica xerogel containing fumed silica and hydrolysed ortholisicate. Rare earth modified alumina and mixed alumina-zirconia ceramics were obtained from slurries containing alumina colloidal particles and milled ceramic fibres. Functional properties i.e. the high temperature spectral emissivities have been measured by means of a specially designed apparatus where the working conditions of the selective emitters can be reproduced and monitored.  相似文献   

17.
通过三种硅源, 正硅酸已脂(TEOS)、胶体二氧化硅、气相法白炭黑, 成功地合成出ITQ-13分子筛, 并用X射线衍射(XRD)、扫描电子显微镜(SEM)、BET表面积测试和氘代乙腈吸附等方法对合成的材料进行表征. 结果表明, 用硅胶和白炭黑为硅源合成出的ITQ-13具有较好的晶化度和较大的晶体尺寸.  相似文献   

18.
Several series of pyrocarbon-mineral adsorbents (carbosils) were studied using the nitrogen adsorption method to compute structural and energetic parameters within the scope of overall adsorption isotherm approximation applying a regularization procedure with consideration for surface heterogeneity. A portion of pyrocarbon deposits (graphene clusters) fills mesopores of the oxide supports, but another portion represents relatively large nonporous pyrocarbon globules formed on the outer surfaces of the oxide matrices. Contributions of these two types of pyrocarbon deposits depend on the nature of oxide matrices and carbonized precursors. The characteristics of pyrocarbon formed on the silica (silica gel, fumed silica) surfaces differ from those for deposits prepared on the surfaces of titania/silica and alumina/silica or by the pyrolysis of metal acetylacetonates (Zr(AcAc)(4), TiO(AcAc)(2), Ni(AcAc)(2), Zn(AcAc)(2), Cr(AcAc)(3), Co(AcAc)(2)) on mesoporous silica gel. The structural and energetic characteristics estimated using the adsorption method with consideration for the adsorbent heterogeneity are fruitful for comparative analysis of the (1)H NMR spectra of water adsorbed on carbosils from the gas phase or unfrozen in the aqueous suspensions at T < 273 K. Copyright 2001 Academic Press.  相似文献   

19.
Two series of the hydrothermally treated (HTT) silica gel samples using the microwave reactor or the classical autoclave have been prepared. The HTT modification processes have been performed under the liquid water layer or in the water vapour. The initial and HTT silica samples were examined by means of adsorption (N2), thermogravimetric (TG) and infra red (FTIR-ATR) methods. On the basis of the obtained results it was stated that even a short time of HTT modification using microwaves is enough to make distinct changes in the porous structure of silica. The time and pressure are the most influential parameters during HTT using microwaves. However, in the case of the samples modified in the classical autoclave the most important factors are temperature and time. The hydrothermally modified silica samples possess different concentration of intraglobular water dependently on applied treatment conditions and water state.  相似文献   

20.
Basing on quantum chemical simulations (semi‐empirical methode PM3) and vibration spectroscopy (Infrared (IR) and inelastic neutron scattering (INS)) and using other experimental data, a model of the formation of fumed silica particles is proposed, leading from initial molecules, via protoparticles and primary particles up to aggregates and agglomerates. Also, defintions of products in the flame process steps are suggested, from a chemical point of view. This process may be described as a sequence of states: Molecules ⇒ (molecular clusters = protoparticles) ⇒ primary particles ⇒ aggregates ⇒ agglomerates  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号