首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Structure and Catalytic Properties of Molybdenum Oxide Supported Catalysts in Some Oxidation Reactions Molybdenum supported catalysts were prepared by using different precursor compounds such as Mo(π-C3H5)4, [Mo(OC2H5)5]2, MoCl5, (NH4)6Mo7O24, and their catalytic behaviour in some oxidation reactions was studied. During the preparation process, as a result of interaction between the molybdenum compound used and the support, different surface compounds with strongly differing catalytic properties have been formed. MoO3 and supported catalysts with MoO3 crystallites on the surface, catalyse the H2 oxidation at temperatures above 400°C and the CO oxidation at temperatures of about 500°C. The reaction proceeds according to a redox mechanism. On surface compounds of molybdenum which exist on the surface if organic complexes are used as precursors, the catalytic H2 oxidation occurs even at 100°C with a high reaction rate. The catalytic CO oxidation on these catalysts occurs at temperatures of about 300°C. An associative mechanism on coordinative unsaturated MoVI sites is discussed.  相似文献   

2.
Synthesis and Structure of Mo2NCl7 The reaction of VN with MoCl5 at 175 °C in a sealed glass ampoule yields the molybdenum(V) nitride chloride Mo2NCl7 in form of air sensitive black crystals with the triclinic space group P1¯ and a = 905.7(8); b = 975.4((6); c = 1283.4(8) pm, α = 103.13(4)°; β = 109.83(5)° und γ = 98.58(5)°. The crystal structure is built up from dinuclear units [Mo2N2Cl7]3— and [Mo2Cl7]3+, which are connected by asymmetric nitrido bridges to form endless chains. Within both dinuclear units the Mo atoms are bridged by three Cl atoms resulting in a Mo‐Mo distance of 349.2(3) pm in the unit [Mo2N2Cl7]3—. In case of [Mo2Cl7]3+, however, a shorter Mo‐Mo distance of 289.4(3) pm is observed, which can be interpreted by a single bond. Correspondingly a reduced magnetic moment of 0.95 B.M. per Mo atom is observed.  相似文献   

3.
The existence of the charge transfer excited triplet state [Mo5+-O-] produced by UV-irradiation of Mo/SiO2 catalysts, and its reactivity are evidenced by experiments of photoluminescence, photoinduced metathesis, and photoreduction of CO. Mo5+ ions can be produced separately by thermal activation and O- ions by further adsorption of N2O on those Mo5+ ions. The latter of which are adsorbed on Mo6+ ions are found to be more reactive than O2- of [Mo6+ =O2-] bond. They are able either to add a molecule such as CO or C2H4, or to abstract hydrogen from H2, CH4 or trans-dicyanoethylene, or a CN group form tetracyanoethylene (TCNE). The Mo5+ ions are able to coordinate gas phase ligands when their coordination sphere possesses vacant sites. This is the case for tetracoordinated Mo5+ 4c ions arising from reduction of tetrahedral Mo6+ ions (Eq. (7)). These Mo5+ 4c ions are similar to those produced by UV-irradiaiion (Eq. (2)). In addition, if the adsorbed molecule has a sufficiently large electron affinity, such as TCNE or O2, an electron transfer can occur (Eq. (9) and (17)). The [Mo5+-O-] bond obtained by thermal activation is more difficult to evidence than that obtained with UV-activation because it is not detectable by EPR. However, the EPR results obtained at low temperature show that the O- ions adsorbed on Mo/SiO2 catalysts as well as the [Mo5+-O-] excited triplet state obtained by UV-irradiation of 1Mo6+=O2] interact with methanol (Eq. (16)). They are consistent with the mechanism of methanol oxidation occurring at high temperature (Eq. (4)).  相似文献   

4.
Two series of glasses have been prepared and characterized. One with varying Li2O/P2O5 ratio and the other with varying Mo/P ratio. The relationship between the formation of the reduced state of molybdenum in phosphate glasses and the type of gases released in heating batch materials has been investigated. Effect of temperature on the valence state of molybdenum is also studied. Oxidation-reduction (redox) equilibrium of Mo5+/Mo6+ and environment of molybdenum (V) in these series of lithium-molybdenum-phosphate glasses are related to the glass composition and the possible structural units formation in the glasses.  相似文献   

5.
Oxophthalocyaninato(2–)molybdenum(IV), activated by bromine oxidation prior to use, reacts with fused triphenylphosphine in the presence of bis(triphenylphosphine)iminium bromide to yield linear-bis(triphenylphosphine)iminium trans-dibromophthalocyaninato(2–)molybdate(III), l(PNP)trans[Mo(Br)2pc2?]. It crystallizes triclinic with crystal data: a = 10.506(1) Å, b = 12.436(2) Å, c = 12.918(2) Å, α = 76.186(1)°, β = 67.890(1)°, γ = 68.689(1)°; space group P1 (No. 2); Z = 1. MoIII is in a pseudo-octahedral coordination geometry with the bromo ligands in trans-arrangement. The Mo? Np and Mo? Br distance is 2.043(10) and 2.588(1) Å, respectively. The PNP cation adopts a linear conformation. In the IR spectrum vas(Mo? Br) is observed at 218 cm?1 and vas(P? N) of the linear (P? N? P) core at 1406 cm?1. Cyclic and differential-pulse voltammetry show two quasi-reversible cathodic processes at ?1.15 and ?0.53 V vs. Ag/AgCl. The first is assigned to a phthalocyaninate directed reduction (pc2?/pc3?), while the latter arises from a Mo directed reduction (MoIII/MoII). Spectral monitoring confirms the reversible MoIII/MoII reduction. Two quasi-reversible anodic processes at 0.60 and 1.27 V are assigned to the successive Mo directed oxidation with redox couples MoIII/MoIV and MoIV/MoV. For the first time, three very intense spin-allowed trip-quartet transitions are observed in the electronic absorption spectra at 7140 (TQI), 16890 (TQ2) and 18700 cm?1 (TQ3) together with a sing-quartet transition at 15850 cm?1 and characteristic ?Q”? region with maximum at 28500 cm?1 and ?N”? region at 37400 cm?1. All electronic excitations are of comparable intensity. A prominent low temperature emission at 6690 cm?1 is assigned to a spin-forbidden trip-sextet.  相似文献   

6.
The (VO)0.09V0.18Mo0.82O3 · 0.54H2O microrods of hexagonal symmetry system with the unit cell parameters a = 10.586 Å and c = 3.698 Å were obtained for the first time under hydrothermal conditions (T = 160°C, τ = 30?50 h). Particles were 1–2 μm in diameter and up to 45 μm in length. The compound is thermally stable up to 469°C. The core-electron Mo3d, V2p, and O1s and valence-band X-ray photoelectron spectra and IR spectra of the samples were studied. The molybdenum atoms in the complex oxide have the oxidation state Mo6+. The vanadium atoms introduced into the h-MoO3 lattice in molybdenum positions have the oxidation state V5+. Approximately one-third of vanadium atoms as vanadyl ions (VO)2+ are located in the channels of h-MoO3 lattice, thus stabilizing the latter.  相似文献   

7.
For the first time, solid solutions of LiMn2–X Mo X O4 nanoparticles were synthesized by combustion method at 700 °C in air. The synthesized LiMn2–X Mo X O4 (X?=?0.0–0.2) nanoparticles were characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy (FT-IR), Field emission-scanning electron microscopy, and Particle size analysis. The unit-cell constant is increasing from 8.237 to 8.293 Å with the increase of Mo, the presence of Mo at X?≤?0.05 in LiMn2–X Mo X O4 nanoparticles retained the spinel structure (Fd-3m), whereas on increasing the Mo (X?≥?0.05 %), the ordering of Li+ ions in both octahedral and tetrahedral cationic position leads to the lowering of symmetry (P4132). On increasing the Mo content, prominent peak splitting and broadening are observed at 600–500 and 830 cm?1 for Li–Mn–O and Mo–O respectively in the FT-IR spectra. The TG/DTA spectrum reveals that the convenient formation of Li mangano-molybdate is at 700 °C. The voltammograms of all the samples show two redox peaks centered around 4 V except for the sample with higher Mo doping (X?=?0.2). The sample with X?=?0.03 shows higher redox peak current values. A marginal increase of 146 Ω R ct value was found for the LiMn1.97Mo0.03O4 nanomaterial after 10th cycle which is rather high for the rest of the materials. A discharge capacity retention of 88 % at 50th cycle is observed for X?=?0.03 sample, while the other samples exhibit drastically reduced capacity. The LiMn1.97Mo0.03O4 nanoparticle can able to deliver higher and constant discharge capacity, and it may be a good alternative for the existing cathode materials.  相似文献   

8.
The bridged dimer of molybdenum(V), Mo2O42+ (aq) is oxidized to Mo(VI) by carboxylato-bound chromium(V). Reaction of bis(chelated) Cr(V) with excess (MoV)2 yields a chelated Cr(III) complex, but this conversion proceeds through a pink Cr(IV) intermediate, indicating that the oxidation of (MoV)2 entails a series of le? steps, passing through a reactive transient, the mixed valence complex, MoVMoVI. When experiments are carried out in buffers of the ligating acid, 2-ethyl-2-hydroxybutanoic acid, two stages of ligation of (MoV)2 by the ligand anion, characterized by rate constants near 104 and 0.14 M?1 s?1 (19°C; pH 3.0; μ = 0.6 M) must be considered. In quick mixing experiments, the first, but not the second, of these proceeds before the redox reaction gets under way, and autocatalytic redox profiles are observed. If the slower ligation is allowed to reach completion before Cr(V) is added, reduction to Cr(IV) is greatly accelerated and conforms to the superposition of two processes, whereas the reduction of Cr(IV) to Cr(III) is slow and exhibits a rate independent of [CrIV]. A proposed sequence applicable to the latter conditions includes reductions of Cr(V) at two ligation levels, slow unimolecular conversion of (MoV)2 to an activated form, and rapid reduction of the latter with Cr(IV). Here Cr(IV) has assumed the role of a scavenger for the reactive form of (MoV)2.  相似文献   

9.
The adsorption of CO and NO over VO x -SBA-15 mesoporous materials with different vanadium content was investigated by FT-IR spectroscopy. Vanadium complexes were reduced in situ by hydrogen atmosphere at 450 °C for 3 h. Spectra of reduced samples show increasing in intensity of silanol groups, caused by dissociation of V–O(Si) bonds and formation of new H–O(Si) bonds. Reduction occurs with formation of water. The band corresponds to overtone of V=O stretching modes decreases in intensity because of oxygen withdrawing from V=O species. Presence of V4+ and V3+ species was observed. Inspection of CO adsorbed IR spectra evidenced existence at least two different type of V3+–CO complexes on the silica surface differing in both stretching frequencies and complex stabilities. We did not found principal difference between spectra of absorbed CO at ?196 °C on the samples with different concentration of vanadium, probably because of relative low degree of reduction. As well as heterogeneity of surface V3+ and V4+ species was evidenced by adsorption of NO. Both V3+ and V4+ ions possess two effective coordinative vacancies and as a result can adsorb two NO molecules forming dinitrosyls. A part of V3+ cations forms only mononitrosyls characterize by band at 1724 cm?1. Results obtained after NO adsorption reveal existence of three different kinds of vanadium species. Probably two of them are isolated and associated vanadium sites. The third type of vanadium has different surrounding than other two types. It was demonstrated that NO is a better probe than CO for testing the oxidation and coordination state of reduced vanadium species.  相似文献   

10.
The asymmetric molybdenum(VI) dioxo complexes of the bis(phenolate) ligands 1,4‐bis(2‐hydroxybenzyl)‐1,4‐diazepane, 1,4‐bis(2‐hydroxy‐4‐methylbenzyl)‐1,4‐diazepane, 1,4‐bis(2‐hydroxy‐3,5‐dimethylbenzyl)‐1,4‐diazepane, 1,4‐bis(2‐hydroxy‐3,5‐di‐tert‐butylbenzyl)‐1,4‐diazepane, 1,4‐bis(2‐hydroxy‐4‐flurobenzyl)‐1,4‐diazepane, and 1,4‐bis(2‐hydroxy‐4‐chlorobenzyl)‐1,4‐diazepane (H2(L1)–H2(L6), respectively) have been isolated and studied as functional models for molybdenum oxotransferase enzymes. These complexes have been characterized as asymmetric complexes of type [MoO2(L)] 1–6 by using NMR spectroscopy, mass spectrometry, elemental analysis, and electrochemical methods. The molecular structures of [MoO2(L)] 1–4 have been successfully determined by single‐crystal X‐ray diffraction analyses, which show them to exhibit a distorted octahedral coordination geometry around molybdenum(VI) in an asymmetrical cis‐β configuration. The Mo? Ooxo bond lengths differ only by ≈0.01 Å. Complexes 1 , 2 , 5 , and 6 exhibit two successive MoVI/MoV (E1/2, ?1.141 to ?1.848 V) and MoV/MoIV (E1/2, ?1.531 to ?2.114 V) redox processes. However, only the MoVI/MoV redox couple was observed for 3 and 4 , suggesting that the subsequent reduction of the molybdenum(V) species is difficult. Complexes 1 , 2 , 5 , and 6 elicit efficient catalytic oxygen‐atom transfer (OAT) from dimethylsulfoxide (DMSO) to PMe3 at 65 °C at a significantly faster rate than the symmetric molybdenum(VI) complexes of the analogous linear bis(phenolate) ligands known so far to exhibit OAT reactions at a higher temperature (130 °C). However, complexes 3 and 4 fail to perform the OAT reaction from DMSO to PMe3 at 65 °C. DFT/B3LYP calculations on the OAT mechanism reveal a strong trans effect.  相似文献   

11.
Kinetics of polymerization of acrylonitrile by the redox system V5+–lactic acid in sulfuric acid at 20–35°C was studied. Oxidation of lactic acid by V5+ in the absence of monomer was also carried out under identical conditions. The rates of polymerization, V5+ disappearance and the chainlengths of polyacrylonitrile were measured. From the results it is concluded that the polymerization reaction is initiated by an organic free radical arising from the V5+–lactic acid reaction with termination by V5+ ions. Mutual termination of active polymer radicals does not appear to operate under the conditions studied. The various rate parameters were evaluated.  相似文献   

12.
The IR spectra of paramagnetic Mo/V/ oxygen compounds that are claimed in the literature to be unstable, were measurement in the 4000–3000 and 1200–250 cm?1 regions. The spectra are poor but show a few bands in the valence and in the OH groups vibrations regions. Mo/V/ hydroxide can be reversibly or irreversibly dehydroxylated thermally in vacuum. The irreversible dehydroxylation of amorphous species containing Mo/V/ hydroxide takes place at >350°C, and is connected with a rearrengement of the atomic OMoO linkage and with crystallization of MoO3, MoO2 and Mo4O11 phases.  相似文献   

13.
Cobalt- and iron-containing catalysts active in the oxidation of organic dyes with hydrogen peroxide have been prepared from granular synthetic NaY and HY zeolites without a binder by ion exchange followed by heat treatment at 350–500°C. It has been demonstrated by X-ray photoelectron spectroscopy that cobalt and iron in these catalysts are in the form of Co2+ and Fe3+ ions on the support surface. The FeHY and CoNaY catalysts are most effective and stable in the oxidation of the anionic dye carmoisine in weakly acidic and alkaline media.  相似文献   

14.
The MoZSM-5 (4.0 wt % Mo) catalyst has been characterized by high-resolution transmission electron microscopy, EDXA, and EPR. Two types of molybdenum-containing particles are stabilized in the catalyst in the course of nonoxidative methane conversion at 750°C. These are 2-to 10-nm molybdenum carbide particles on the zeolite surface and clusters smaller than 1 nm in zeolite channels. According to EPR data, these clusters contain the oxidized molybdenum form Mo5+. The surface Mo2C particles are deactivated at the early stages of the reaction because of graphite condensation on their surface. Methane is mainly activated on oxidized molybdenum clusters located in the open molecular pores of the zeolite. The catalyst is deactivated after the 420-min-long operation because of coke buildup on the zeolite surface and in the zeolite pores.  相似文献   

15.
The Mo/Al2O3 catalysts for propene metathesis were prepared both via anchoring Mo complexes of various nuclearities and by conventional method of impregnation. The catalysts from metal complexes were found to be active in metathesis at ambient temperature after reduction with H2 or CO at 400–500°C. The average oxidation state of Mo in the activated catalysts was determined with regard to oxygen consumption needed for oxidation of the reduced Mo species to Mo6+.  相似文献   

16.
The adsorption of NO, NO/O2 mixtures and NO2 on pure ZrO2 and on two series of catalysts supported on ZrO2, one containing vanadia and the other molybdena (ZV and ZMo, respectively), has been investigated. The V and Mo surface contents of the latter were ≤3 atoms nm−2 and ≤5 atoms nm−2, respectively. All samples had been previously submitted to a standard oxidation treatment. On all samples, only extremely minor amounts of NOx surface species are formed by NO interaction at room temperature (RT). NOx surface species are formed in greater amounts on pure ZrO2 when NO and O2 are coadsorbed at RT; they are mainly nitrites, small amounts of nitrates, and small amounts of (O2NO−H)δ− species; when ZrO2 is warmed to 623 K in the NO/O2 mixture, nitrites decrease, nitrates and (O2NO−H)δ− species increase. The same NOx species as on the ZrO2 surface free from V (or Mo) are formed on ZV (or ZMo) samples with surface V (or Mo) density <1.5 atoms nm−2; however, they occur in decreased amount with increasing V (or Mo) coverage. On ZV samples with a surface V density of 1.5–3 atoms nm−2 (or ZMo samples with a surface Mo density of 1.5–5 atoms nm−2) when NO and O2 are coadsorbed at RT, there is formation of small amounts of nitrites, nitrates (both on ZrO2 surface free from V (or Mo) and at the edges of V- or Mo-polyoxoanions) and NO2 δ+ species, associated with V5+ (or Mo6+) of very strong Lewis acidity; when samples are warmed up 623 K in the NO/O2 mixture, nitrites disappear, nitrates increase, NO2 δ+ species remain constant or slightly decrease. When NO2 is allowed into contact at RT with oxidized samples, surface situations almost identical to those obtained for each sample warmed to 623 K in NO/O2 mixture is reached. The NOx surface species stable at 623 K, the temperature at which catalysts show the best performance in the selective catalytic reduction (SCR) of NO by NH3, are nitrates, both on ZrO2 and on polyvanadates or polymolybdates at high nuclearity. On the contrary, nitrites and NO2 δ+ species are unstable at 623 K.  相似文献   

17.
In this study, we proposed high‐performance chemically regenerative redox fuel cells (CRRFCs) using NO3/NO with a nitrogen‐doped carbon‐felt electrode and a chemical regeneration reaction of NO to NO3 via O2. The electrochemical cell using the nitrate reduction to NO at the cathode on the carbon felt and oxidation of H2 as a fuel at the anode showed a maximal power density of 730 mW cm−2 at 80 °C and twofold higher power density of 512 mW cm−2 at 0.8 V, than the target power density of 250 mW cm−2 at 0.8 V in the H2/O2 proton exchange membrane fuel cells (PEMFCs). During the operation of the CRRFCs with the chemical regeneration reactor for 30 days, the CRRFCs maintained 60 % of the initial performance with a regeneration efficiency of about 92.9 % and immediately returned to the initial value when supplied with fresh HNO3.  相似文献   

18.
The title compound, (η5-C5H5)2Mo2(CO)4 (μ-EtCCEt) in its crystalline form, has a molecular structure that lacks symmetry. Two (ηs-C5H5)Mo groups are connected by an MoMo bond 2.977(1) Å in length with the usual sort of crosswise acetylene bridge. There are two terminal CO groups on Mo(1) and one on Mo(2). The fourth CO group is in a semi-bridging posture with Mo(2)—C = 1.936(6) and Mo(1)—C = 2.826(6). The 13CO NMR spectrum at ?126°C has six lines, indicative of the presence of two isomers, in each of which two CO's are either statically or dynamically equivalent. Complex changes occur in the spectrum as the temperature is increased so that at ?40°C there is only a single line. A detailed interpretation of these spectra is not yet available.  相似文献   

19.
The V4+ content in V2O5 doped with MoO3 is measured by a spectroscopic method. The influence of the oxygen pressure is also considered. Up to roughly 3.5 at.-% Mo/(Mo+V) the V4+ fraction is equal to the Mo6+ fraction for samples sintered in air. Increase of PO2 gives a decrease in the measured values of the V4+ fraction for the 5, 10 and 33 at.-% Mo-doped samples.  相似文献   

20.
Synthesis and Crystal Structure of (PPh4)2[Mo2NCl9]2, a μ-Nitrido Complex with Molybdenum (V) and (VI) The title compound is formed as a by-product in the partial oxidation of Mo2NCl7 with chlorine in POCl3 solution, when the reaction mixture is treated with PPh4Cl. The crystals, which are sensitive to moisture, are black in reflectance and red in transmittance. A more effective synthesis is the direct reaction of PPh4[MoNCl4] with MoCl5 in dichloro methane. (PPh4)2[Mo2NCl9]2 was characterized by the i.r. spectrum and by a structural analysis with X-ray data. The compound crystallizes triclinic in the space group P1 with two formula units per unit cell (9225 independent observed reflexions, R = 0.058). The cell parameters are (20°C): a = 1144 pm, b = 1517 pm, c = 2000 pm, α = 79.8°, β = 80.1°, γ = 72.1°. (PPh4)2[Mo2NCl9]2 consists of PPh4⊕ cations and the anions [Mo2NCl9]222?, which dimerize via chloro bridges with Mo? Cl bons lengths of 243 pm and 287 pm. In the [Mo2NCl9]22? units the molybdenum atoms are linked by MoVI?N? MoV bridges (bond angles 179° and 174°, resp.) with Mo? N bond lengths of 167 pm and 212 pm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号