首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
SiO2/ZrO2/C carbon ceramic material with composition (in wt%) SiO2 = 50, ZrO2 = 20, and C = 30 was prepared by the sol–gel-processing method. A high-resolution transmission electron microscopy image showed that ZrO2 and the graphite particles are well dispersed inside the matrix. The electrical conductivity obtained for the pressed disks of the material was 18 S cm−1, indicating that C particles are also well interconnected inside the solid. An electrode modified with flavin adenine dinucleotide (FAD) prepared by immersing the solid SiO2/ZrO2/C, molded as a pressed disk, inside a FAD solution (1.0 × 10−3 mol L−1) was used to investigate the electrocatalytic reduction of bromate and iodate. The reduction of both ions occurred at a peak potential of −0.41 V vs. the saturated calomel reference electrode. The linear response range (lrr) and detection limit (dl) were: BrO3 , lrr = 4.98 × 10−5–1.23 × 10−3 mol L−1 and dl = 2.33 μmol L−1; IO3 , lrr = 4.98 × 10−5 up to 2.42 × 10−3 and dl = 1.46 μmol L−1 for iodate.  相似文献   

2.
The Ni/SiO2, Ni/ZrO2, and Ni/SO4/ZrO2 systems were studied by diffuse-reflectance IR spectroscopy using CO as a probe molecule. The Ni/SiO2 and Ni/ZrO2 systems are similar in properties, and the state of nickel in the Ni/ZrO2 system is determined by the specific surface area. In the Ni/SO4/ZrO2 system, the surface sulfur compounds affect substantially the state of nickel: Niδ+ species with a partial positive charge are formed due to the strong electron-acceptor properties of the sulfur compounds. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 409–413, March, 1998.  相似文献   

3.
A series of MoO3/γ-Al2O3 catalysts with different Mo surface densities (Mo atoms/nm2) has been prepared by incipient wetness impregnation method. Structural characteristics of the prepared catalysts were investigated by atomic absorption spectroscopy, X-ray diffraction, Fourier Transform Infrared spectroscopy, N2 adsorption at −196 °C, and temperature-programmed reduction (TPR). The catalytic activities of the prepared catalysts were tested by cyclohexene conversion between 200 and 400 °C. XRD results indicated that molybdenum oxide species were dispersed as a monolayer on the support up to 4.04 Mo atoms/nm2, and the formation of crystalline MoO3 was observed above this loading. FTIR and TPR results showed that molybdenum oxide species were present predominantly in tetrahedral form at lower loading, and polymeric octahedral forms were dominant at higher loading. Cyclohexene conversion reaction proceeded mainly through the simple dehydrogenation pathway in the studied temperature range 200–400 °C and was found to be highly dependent on MoO3 dispersion.  相似文献   

4.
Sulfur‐resistant methanation of syngas was studied over MoO3–ZrO2 catalysts at 400°C. The MoO3–ZrO2 solid‐solution catalysts were prepared using the solution combustion method by varying MoO3 content and temperature. The 15MoO3–ZrO2 catalyst achieved the highest methanation performance with CO conversion up to 80% at 400°C. The structure of ZrO2 and dispersed MoO3 species was characterized using X‐ray diffraction and transmission electron microscopy. The energy‐dispersive spectrum of the 15MoO3–ZrO2 catalyst showed that the solution combustion method gave well‐dispersed MoO3 particles on the surface of ZrO2. The structure of the catalysts depends on the Mo surface density. It was observed that in the 15MoO3–ZrO2 catalyst the Mo surface density of 4.2 Mo atoms nm?2 approaches the theoretical monolayer capacity of 5 Mo atoms nm?2. The addition of a small amount of MoO3 to ZrO2 led to higher tetragonal content of ZrO2 along with a reduction of particle size. This leads to an efficient catalyst for the low‐temperature CO methanation process.  相似文献   

5.
The physicochemical properties of the surface of the Y0.1Ce x Zr1−x O2−δ, La0.1Ce x Zr1−x O2−δ (x=0.1–0.7), and Y0.1Pr0.3Zr0.6O2−δ. complex oxide systems were studied using IR and X-ray photoelectron spectroscopies. An appreciable enrichment of the surface of the solids in rare-earth-metal cations (cerium or praseodymium) during the synthesis was revealed. While cations are uniformly spread over the surface of cerium-zirconium solid solutions, the Y0.1Pr0.3Zr0.6O2−δ surface is covered by the clusters or even a phase of praseodymia. Reductive treatment in hydrogen with subsequent reoxidation results in the segregation of cerium ions on the Y0.1Ce0.3Zr0.6O2−δ surface at a temperature as low as 770 K. Original Russian Text ? A.N. Kharlanov, L.N. Ikryannikova, V.V. Lunin, A. Yu. Stakheev, 2007, published in Zhurnal Fizicheskoi Khimii, 2007, Vol. 81, No. 7, pp. 1271–1277.  相似文献   

6.
The effects of various factors on the formation of O2 radical anions in the adsorption of an NO + O2 or NO2 + O2 mixture on ZrO2 were studied. It was found that the thermal stability of the O2 species depends on the composition of the adsorbed gas. It was suggested that nitrogen oxide complexes on ZrO2 centers are responsible for the formation of O2 . These centers are formed upon the treatment of the oxide in a vacuum; however, they are different from both coordinatively unsaturated Zr4+ cations (NO adsorption centers at 77 K) and Zr4+–O–O–Zr4+ centers, at which O2 are formed because of the adsorption of H2 + O2. Based on the experimental data, the mechanism of O2 formation in the adsorption of an NO + O2 mixture is discussed.  相似文献   

7.
The influence of the alumina support on the catalytic activity of Pt/Al2O3 catalysts in aqueous phase reforming of ethylene glycol to hydrogen was studied. The catalysts were prepared by impregnation of γ-, δ-, and α-alumina with H2PtCl6. The highest rate of hydrogen production (452 μmol min−1 g−1) obtained with the Pt/α-Al2O3 catalyst can be related to the highest extent of dispersion of Pt on α-Al2O3. XPS, TEM-EDX and TPR-H2 measurements showed the absence of chloride-containing surface complexes in the Pt/α-Al2O3 catalyst. However, chloride-containing entities were found on the surface of Pt/γ-Al2O3 and Pr/δ-Al2O3 catalysts. When chloride ions are removed chlorinated Pt species facilitate the sintering of Pt crystallites and in this way affect the extent of Pt dispersion. Moreover, depending upon the particular crystalline form, alumina atoms have different coordination and alumina surfaces contain varying amounts of OH groups of different nature which affect the interaction between Pt and the support.  相似文献   

8.
It was established by X-ray diffraction, TPR, and EPR that microemulsion (m.e.) synthesis yields the binary oxides ZrO2(m.e.) and CeO2(m.e.) and the mixed oxide Zr0.5Ce0.5O2(m.e.) in the form of a tetragonal, cubic, and pseudocubic phase, respectively, having crystallite sizes of 5–6 nm. The bond energy of surface oxygen in the (m.e.) samples is lower than in their analogues prepared by pyrolysis. Hydrogen oxidation on the oxides under study occurs at higher temperatures than CO oxidation. ZrO2(m.e.) and CeO2(m.e.) are active in O2 formation during NO + O2 adsorption, while CeO2 is active during CO + O2 adsorption, too. However, its amount here is one-half to one-third its amount in the pyrolysis-prepared samples, signifying a reduced number of active sites, which are Zr4+ and Ce4+ coordinatively unsaturated cations and Me4+-O2− pairs. O2 radical anions are stabilized in the coordination sphere of Zr4+ coordinatively unsaturated cations via ionic bonding, and in the sphere of Ce4+ cations, via covalent bonding. Ionic bonds are stronger than ionic-covalent bonds and do not depend on the ZrO2 phase composition. Zr0.5Ce0.5O2 is inactive in these reactions because of the strong interaction of Zr and Ce cations. It is suggested that Ce(4 + β)+ coordinatively unsaturated cations exist on its surface, and their acid strength is lower than that of Zr4+ and Ce4+ cations in ZrO2 and CeO2, according to the order ZrO2 > CeO2 ≥ Zr0.5Ce0.5O2. Neither TPR nor adsorption of probe molecules revealed Zr cations on the surface of the mixed oxide.  相似文献   

9.
In order to obtain a catalyst support with a high surface area, ZrO2 and ZrO2-Y2O3 were prepared by the hydrolytic decomposition of the corresponding isopropoxide dissolved in benzene. The hydrolysis was carried out at 80°C using an excess amount of distilled water in flowing dry nitrogen. The precipitates thus obtained were dried at 100°C followed by calcination at 500°C in air or nitrogen for 1 h. The specific surface areas for both of the ZrO2 and ZrO2-Y2O3 increased with increasing amount of water added for hydrolysis, and the surface areas for ZrO2-Y2O3 increased with increasing yttrium content. A ZrO2 having a surface area of 130 m2/g was produced, and a stabilized tetragonal ZrO2 with 15 mol% Y3+ having a surface area of 200 m2/g was produced. Furthermore, despite the difference in the ZrO2 and ZrO2-Y2O3 crystal structures, the lattice-strain of ZrO2 has been unequivocally related to the surface area.  相似文献   

10.
The alkoxido-titanium pentamolybdate [(iPrO)TiMo5O18]3− (1) has been obtained as its tetrabutylammonium (TBA) salt by hydrolysis of a mixture containing (TBA)2[Mo2O7], (TBA)4[Mo8O26] and Ti(OiPr)4 in MeCN and has been characterised by 1H, 13C, 17O, 49Ti and 95Mo NMR and FTIR spectroscopy, electrospray ionisation mass spectrometry, elemental microanalysis and single-crystal X-ray crystallography. The Lindqvist-type structure is derived from [Mo6O19]2− by replacement of {Mo=O}4+ by {(iPrO)Ti}3+ and shows bond alternation in the TiMo3O4 rings, with average bond distances of 1.956(8) ? for Ti–O(Mo), 1.832(7) ? for Mo–O(Ti), 1.943(7) ? for Moeq–O(Moax) and 1.910(6) ? for Moax–O(Moeq), while the increase in charge results in a decrease in 17O NMR chemical shift for terminal Mo=O groups from δ 933 for [Mo6O19]2− to δ 875 and 857 for 1 and a shift in νMo=O from 951 cm−1 for [Mo6O19]2− to 930 cm−1 for 1. The main peaks in the negative-ion electrospray ionisation mass spectrum of (TBA)3 1 could be assigned to ion aggregates containing 1 or fragments derived from 1, including {(TBA)2[(iPrO)TiMo5O18]}, {(TBA)[(iPrO)TiMo5O18]}2−, {(iPrO)TiMo2O8}, {TiMo5O18}2−, {TiMo4O15}2− and {Mo3O10}2−.  相似文献   

11.
A kinetic model of radiation-chemical transformations of nitrogen oxide and nitrites in aqueous solutions is proposed. It includes the previously developed reaction scheme for water and H2, H2O2, and O2 solutions complemented by the reactions of water radiolysis products with NO and NO2. It has been shown that the model describes well experimental data on the decomposition of the compounds and the buildup of products depending on the absorbed dose in aqueous solutions at different pH values.  相似文献   

12.

Reactive species generated in the gas and in water by cold air plasma of the transient spark discharge in various N2/O2 gas mixtures (including pure N2 and pure O2) have been examined. The discharge was operated without/with circulated water driven down the inclined grounded electrode. Without water, NO and NO2 are typically produced with maximum concentrations at 50% O2. N2O was also present for low O2 contents (up to 20%), while O3 was generated only in pure O2. With water, gaseous NO and NO2 concentrations were lower, N2O was completely suppressed and HNO2 increased; and O3 was lowered in O2 gas. All species production decreased with the gas flow rate increasing from 0.5 to 2.2 L/min. Liquid phase species (H2O2, NO2 ̄, NO3 ̄, ·OH) were detected in plasma treated water. H2O2 reached the highest concentrations in pure N2 and O2. On the other hand, nitrites NO2 ̄ and nitrates NO3 ̄ peaked between 20 and 80% O2 and were associated with pH reduction. The concentrations of all species increased with the plasma treatment time. Aqueous ·OH radicals were analyzed by terephthalic acid fluorescence and their concentration correlated with H2O2. The antibacterial efficacy of the transient spark on bacteria in water increased with water treatment time and was found the strongest in the air-like mixture thanks to the peroxynitrite formation. Yet, significant antibacterial effects were found even in pure N2 and in pure O2 most likely due to high ·OH radical concentrations. Controlling the N2/O2 ratio in the gas mixture, gas flow rate, and water treatment time enables tuning the antibacterial efficacy.

  相似文献   

13.
We have used IR spectroscopy to study adsorption of NO, propene, and their mixture on Rh-Cr2O3/ZrO2 and Rh-CeO2/ZrO2 catalysts at temperatures of 293-623 K. We have established that adsorption and coadsorption of the reagents (NO and C3H6) have important differences, depending on the nature of the surface. Weak adsorption interactions of the reaction mixture on Rh-CeO2/ZrO2 lead to significantly lower activity of this catalyst in selective catalytic reduction (SCR) of NO by propene.  相似文献   

14.
The thallium-barium double nitrite, TlBa2(NO2)5, is pyroelectric in the 77-600 K range and crystallizes in thePca2 1 space group. The lattice constants at 293 K are: a = 17.868(12),b = 4.934(3),c = 13-426(11) A (MoKa, λ = 0.71069 A). There are four stoichiometric units in the unit cell of volume V= 1184(1) A3 (D o = 3.98,D x = 3.979 Mgm−3),F (000) = 1232, μ = 20.36mm−1. The crystal structure was solved by Patterson and Fourier methods and refined by least-squares to a final conventional agreement indexR = 0.053 for 1371 independent reflections collected in a θ range of 3–30°, using MoKα radiation. There are two independent barium atoms surrounded by NO 2 groups, both with coordination number 10 and distances in the ranges Ba-O = 2.69(4)-3.18(4) A and Ba-N = 3.01(4)-3.18(4) A. The environment of thallium is clearly affected by the lone-pair stereoactivity and involves 12 Tl-O and Tl-N contacts less than 3.5A, but only four Tl-O distances are shorter than 3 A (min. 2.76(2), max. 2.85(3) A), with a pyramidal coordination and thallium at the apex of the pyramid. All these coordination polyhedra are joined in chains running along the shortest lattice vector [010]. The single crystal electronic spectra, studied in absorption with polarized light and in photostimulated emission, are interpreted as due to transitions involving NO 2 electronic levels perturbed by Tl+, whose spin-orbit interaction makes probable also the forbidden singlet-triplet transitions, in agreement with the interpretative picture given for post-transition metal nitrites.  相似文献   

15.
Comprehensive studies combining surface science and real catalyst were performed to get further insight into catalytic active site and reaction mechanism for NO decomposition over supported palladium and cobalt oxide-based catalysts. On palladium single-crystal model catalysts, adsorption, dissociation and desorption behavior of NO was found to be closely related to the surface structures, the stepped surface palladium being active for dissociation of NO. In accordance with this result, the activity of powder Pd/Al2O3 catalysts for NO decomposition was directly related to the number of step sites exposed on the surface, suggesting that the step sites act as the catalytic active site for NO decomposition on Pd/Al2O3. NO decomposition over cobalt oxide was found to be significantly promoted by addition of alkali metals. Surface science study and catalyst characterization led to the same conclusion that the interface between the alkali metal and Co3O4 serves as the catalytic active site. From the results of in situ Fourier transform infrared (FT-IR) spectroscopy and isotopic transient kinetic analysis, a reaction mechanism was proposed in which the reaction is initiated by NO adsorption onto alkali metals to form NO2 species and then NO2 species react with the adsorbed NO species to form N2 over the interface between the alkali metal and Co3O4.  相似文献   

16.
Strategies for countering the solubility of LiMn2O4 (spinel) electrodes at 50 °C and for suppressing the reactivity of layered LiMO2 (M=Co, Ni, Mn, Li) electrodes at high potentials are discussed. Surface treatment of LiMn2O4 with colloidal zirconia (ZrO2) dramatically improves the cycling stability of the spinel electrode at 50 °C in Li/LiMn2O4 cells. ZrO2-coated LiMn0.5Ni0.5O2 electrodes provide a superior capacity and cycling stability to uncoated electrodes when charged to a high potential (4.6 V vs Li0). The use of Li2ZrO3, which is structurally more compatible with spinel and layered electrodes than ZrO2 and which can act as a Li+-ion conductor, has been evaluated in composite 0.03Li2ZrO3 · 0.97LiMn0.5Ni0.5O2 electrodes; glassy LixZrO2 + x/2 (0<x⩽2) products can be produced from colloidal ZrO2 for surface coatings.  相似文献   

17.
Manganese-yttrium-zirconium mixed oxide nanocomposites with three different Mn loadings (5, 15 and 30 wt%) were prepared by sol–gel synthesis. Amorphous xerogels were obtained for each composition. Their structural evolution with the temperature and textural properties were examined by thermogravimetry/differential thermal analysis, X-ray diffraction, diffuse reflectance UV–vis spectroscopy and N2 adsorption isotherms. Mesoporous materials with high surface area values (70–100 m2 g−1) were obtained by annealing in air at 550 °C. They are amorphous or contain nanocrystals of the tetragonal ZrO2 phase (T-ZrO2) depending on the Mn amount and exhibit Mn species with oxidation state higher than 2 as confirmed by temperature programmed reduction experiments. T-ZrO2 is the only crystallizing phase at 700 °C while the monoclinic polymorph and Mn3O4 start to appear only after a prolonged annealing at 1,000 °C. The samples annealed at 550 °C were studied as catalysts for H2O2 decomposition in liquid phase. Their catalytic activity was higher than that of previously studied Mn/Zr oxide systems prepared by impregnation. Catalytic data were described by a rate equation of Langmuir type. The decrease of catalytic activity with time was related to dissolution of a limited fraction (up to 15%) of Mn into the H2O2/H2O solution.  相似文献   

18.
A detailed investigation of sulphided Co/Mo/Al2O3 catalysts, their oxide precursors and several model oxides and sulphides of cobalt and molybdenum has been carried out using x-ray photoelectron spectroscopy and x-ray absorption spectroscopy (xanes andexafs). Octahedrally coordinated Co(II) and Mo(IV) are shown to be present in a sulphidic environment on the surfaces of these catalysts. The surface species contain an excess of sulphur, probably involving disulphide linkages. The surface compositions of the catalysts examined conform to the general formula Co11 Mo 2n IV (2n + 3)S 2 2− (2n -2)S2−.  相似文献   

19.
Metal promoted zirconia-based oxide sorbents, such as Pt–ZrO2/Al2O3 for NO x have been investigated. To clarify the role of the catalyst component, sorption of NO and NO2 was compared using the samples with and without Pt. The catalytic oxidation of NO to NO2 and successively to nitrate ions is an important role for the Pt catalyst. The experimental results indicate that a high-temperature calcination is essential to remove residual Cl from Pt–ZrO2–Al2O3 prepared from H2PtCl6 in order to provide more active NO x sorption sites. Of M–ZrO2–Al2O3 samples investigated, ruthenium as well as Pt demonstrated relatively good performance as a catalyst component in the sorbent. The FT-IR spectra after sorption of NO and NO2 demonstrated a strong band attributed to stored nitrate ions. The Pt catalyst was more resistant to sulfur poisoning than a base metal catalyst. However, the NO x sorptive capacities of the Pt–ZrO2/Al2O3 sorbents were expected to be deteriorated in dilute SO2 as far as observed from FT-IR spectra.  相似文献   

20.
The first part of this paper deals with the morphology of the MoS2 phase and its oxide precursor, the MoO3 phase, mainly from a geometrical point of view. After giving a brief review of the literature describing the structure of these compounds, Mo densities in both phases were calculated along various crystallographic planes. Further, using structural models recently proposed by others, Mo densities in MoS2 were also calculated in the case of an epitactic growth on γ-Al2O3 and TiO2 model surfaces. Then, the calculated Mo densities were compared with experimental results (Mo density when HDS activity is maximal) previously obtained for catalysts constituted of MoS2 supported on a low SSA TiO2, a high SSA TiO2 and a conventional γ-alumina. It was suggested that either on alumina or titania the MoS2 phase is growing as (100) MoS2 planes. However, while on the alumina the optimal MoS2 phase might be constituted of dispersed MoS2 slabs covering only a part of the alumina surface (2.9–3.9 Mo atoms/nm2), on titania the optimal MoS2 phase might be constituted of a uniform MoS2 monolayer (5.2 atoms/nm2 for the high SSA titania, which is equal to the Mo density of a perfect MoS2 (100) plane). This difference may originate in the creation of a 'TiMoS' phase enhancing the S atoms mobility over Mo/TiO2-sulfided catalysts. Indeed, while in the case of a γ-alumina carrier the active sites (labile S atoms) are located on the edge of MoS2 slabs making the ratio Moedge/Mototal a crucial parameter for the catalytic performances, in the case of a titania carrier the labile sulfur atoms might be statistically distributed all over the TiMoS active phase. Further, the higher Mo density observed over the high SSA titania (5.2 atoms/nm2) when compared to that over the low SSA titania (4.2 atoms/nm2) was supposedly due to the pH-swing method advantageously used to prepare the former carrier. Indeed, this method allows giving a solid with enhanced mechanical properties providing a good stability to the derived catalysts under experimental conditions. In addition, this TiO2 carrier exhibits a great homogeneity, with a surface structure substantially uniform, which might be adequate for a long-range growth of (100) MoS2 slabs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号