首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 180 毫秒
1.
The coadsorption of chlorine with oxygen on Ni(110) surface has been investigated by XPS, UPS, AES and work function measurements. The chlorine preadsorption drastically inhibits the further uptake of oxygen. On the contrary, precovered oxygen has hardly any influence on the additional adsorption of chlorine due to the incorporation of precovered oxygen into the subsurface driven by the chlorine coadsorption. ARXPS measurements provide the evidence for this coadsorption model. The thermal desorption of chlorine and oxygen from the coadsorption surface is very similar to that of both individual adsorbates under the same heating conditions, but the desorption temperature of both the adsorbates apparently decreases on the coadsorption surface. The coadsorption and thermodesorption mechanisms are also discussed in detail.  相似文献   

2.
The crystal structure of perovskite-type catalysts, Ca_xLa_(1-x)MnO_(3 λ), remains unchangedwhen x varies from 0 to 1 as identified by X-ray analysis. Both non-stoichiometric amountof oxygen (denoted by λ) and Mn~(4 ) content are functions of x. ESR analysis showed thatvarying the substitution value x in A, the oxidation state of B could simultaneously be adjust-ed, this permits one to change the oxygen chemisorpting ability of these catalysts and toraise their catalytic activity. Based upon the experimental results and from the point ofview of solid defect chemistry, a theoretical analysis for the possible formation of defecttypes is made, and the assumption that the formation of the active species O_2~- or O~- isthrough the reaction of oxygen anion defect with molecular oxygen in gas phase is proposed.This idea is supported by the data obtained by XPS investigation. The reaction mechanism ofpcrovskite-type catalyst for ammonia oxidation is discussed accordingly.  相似文献   

3.
The dispersion state and catalytic properties of anatase-supported vanadia species are studied by means of X-ray diffraction (XRD), laser Raman spectroscopy (LRS), H2 temperature-programmed reduction (TPR) and the selective oxidation of o-xylene to phthalic anhydride. The almost identical values of the experimental dispersion capacity of V2O5 on anatase and the surface vacant sites available on the preferentially exposed (001) plane of anatase suggest that the highly dispersed vanadium cations are bonded to the vacant sites on the surface of anatase as derived by the incorporation model. When the loading amount of V2O5 is far below its dispersion capacity, the dispersed vanadia species might mainly consist of isolated VOx species bridging to the surface through V-O-Ti bonds. With the increase of V2O5 loading the isolated vanadia species interact with their nearest neighbors (either isolated or polymerized vanadia) through bridging V-O-V at the expenses of V-O-Ti bonds, resulting in the increase of the ra  相似文献   

4.
The time evolution of oxygen plasma treated polystyrene(PS)surfaces was investigated upon storing them in theair under controlled humidity conditions.The methods of water contact angle,X-ray photoelectron spectroscopy(XPS),sumfrequency generation(SFG)vibrational spectroscopy,and atomic force microscopy(AFM)were used to infer the surfaceproperties and structure.Chemical groups containing oxygen were formed on the PS surface with the plasma treatment,demonstrated by water contact angle and XPS.The surface polarity decayed markedly on time,as assessed by steady increasein the water contact angle as a function of storage time,from zero to around 60°.The observed decay is interpreted as arisingfrom surface rearrangement processes to burying polar groups away from the uppermost layer of the surfaces,which is incontact with air.On the other hand,XPS results show that the chemical composition in the first 3 nm surface layer isunaffected by the surface aging,and the depth profile of oxygen is essentially the same with time.A possible change of PSsurface roughness was examined by AFM,and it showed that the increase of water contact angle during surface aging couldnot be attributed to surface roughness.Thus,it is concluded that surface aging is attributable to surface reorganization andthe motion of oxygen containing groups is confined within the XPS probing depth.SFG spectroscopy,which is intrinsicallyinterface-specific,was used to detect the chemical structure of PS surface at the molecular level after various aging times.The results are interpreted as follows.During the aging of the plasma treated PS surfaces,the oxygen containing groupsundergo reorientation processes toward the polymer bulk and/or parallel to the surface,while the CH_2 moiety stands up onthe PS surface.Our results indicate that the surface configuration changes do not require large length scale segmentalmotions or migration of macromolecules.Motions that are responsible for surface configuration changes could be relativelysmall rotational motions.The aging behaviors under different relative humidity conditions were shown to be similar from18% to 91%,whereas the kinetics of surface polarity decays were faster in higher relative humidity.Here,the surfacerearrangement of polystyrene films that were previously treated by oxygen plasma and aged,and was investigated in terms ofcontact angle after the water immersion.The contact angles of the water-immersed samples were found to change andapproach the initial values before the immersion asymptotically.  相似文献   

5.
The interactions of oxygen with pre~reduced silver catalysts as well as their catalytic propertiesfor CO selective oxidation in H2 after oxygen pre-treatment are studied in this paper. It is found that the pretreatment exerts a strong influence on the activity and selectivity of the silver catalyst. A drop in activity and selectivity is observed after treating a pre-reduced catalyst with oxygen at low temperatures,whereas a converse result is obtained after an oxidizing treatment at high temperatures (T≥350℃). O2-TPD results show that surface oxygen species adsorbs on silver surface after the oxygen treatment at low temperatures. However, penetration of oxygen into the silver is enhanced by a high temperature treatment, meanwhile the surface oxygen species disappear. No other silver species except metallic silver are observed on all the catalysts by XRD, and the size of silver particle is not changed after the treatment with oxygen at low temperatures. The surface oxygen species formed by oxygen treatment can also be removed by hydrogen reduction. The strongly-adsorbed surface oxygen species prohibit the adsorption and diffusion of oxygen species in reaction gas on the surface of silver catalyst, causing the decrease in CO oxidation activity, in other words, it is important to obtain a clean silver surface for increasing the catalyst activity in CO removal from H2-rich feed gas. The differences in activity and selectivity due to the oxygen pretreatment at different temperatures axe discussed in terms of the changes in the surface/subsurface oxygen species of the silver particles.  相似文献   

6.
The composite films, XW11O39^n-/SiO2,(X refers to Si,Ge or P,respectively) were prepared by tetraethoxysilane (TEOS) hydrolysis sol-gel method via spin-coating technique. Formation of the composite films is due to strong chemical reaction of organic silanol group with the surface oxygen atoms of XW11O39^n-, resulted in the saturation of the surface of the lacunary polyoxometalates (POMs). Therefore,the coordination structural model of the films was proposed. As for the films, retention of the primary Keggin structure was confirmed by UV-vis, FT-IR spectra and MAS NMR. The surface morphology of the films was characterized by SEM, indicating that the film surface is relatively uniform, and the layer thickness is in the range of 250-350nm. Aqueous formic acid (FA) (0-20mmol/L) was degraded into CO2 and H2O by irradiating the films in the near-UV area. The results show that all the films have photocatalytic activities and the degradation reaction follows Langmuir-Hinshelwood first order kinetics.  相似文献   

7.
Mn-Na2WO4/SiO2催化剂表面活性中心结构的DFT研究   总被引:1,自引:0,他引:1  
Mn Na2WO4/SiO2 is one of the best catalysts for oxidative coupling of methane.To investigate the nature of active centers and the reaction mechanism,the structure of possible metal sites formed by tungsten and manganese over the silica surface were studied using molecular simulation method and ab initio DFT calculations.Silica support exists in the catalyst as 岐瞔ristobalite and its (111) face exposes preferentially to the surface.The calculated results show that tungsten interacts with the silica surface by three or one bridge oxygen atoms to form tetrahedral [WO4],and manganese interacts with single bridge oxygen to form dispersed [MnO4] or exists as oxide clusters.The nature of the molecular orbitals and the electronic structure suggest that the tetrahedral [WO4] site with single bridge oxygen is the most probable active center responsible for methane activation.  相似文献   

8.
The adsorption and decomposition of NzO at regular and defect sites of MgO (001) surface have been studied using cluster models embedded in a large array of point charges (PCs) by DFT/B3LYP method. The results indicate that the MgO (001)surface with oxygen vacancies exhibits high catalytic reactivity toward N2O adsorptive-decomposition. It is different from the regular MgO surface or the surface with magnesium vacancies.Much elongation of O—N bond of N2O after adsorption at oxy-gen vacancy site with O end down shows that O—N bond has been broken with concurrent production of N2, leaving a regu-lar site instead of the original oxygen vacancy site (F center ).The MgO (001) surface with magnesium vacancies hardly ex-hibits catalytic reactivity. It can be concluded that N2O dissoci-ation likely occurs at oxygen vacancy sites of MgO (001) sur-face, which is consistent with the generally accepted viewpoint in the experiments. The potential energy surface (PES) reflects that the dissociation process of N2O does not virtually need to surmount a given energy barrier.  相似文献   

9.
The interaction between radionuclides and solid/water interfaces is important to understand the physicochemical processes of radionuclides in the natural environment.Herein,the interaction of 60Co(Ⅱ) with TiO 2 in aqueous solution as a function of pH and ionic strength was studied by using batch technique combined with surface complexation model and density functional theory(DFT) calculations.The batch experimental results showed that the adsorption of 60Co(Ⅱ) was dependent on pH and independent of ionic strength,indicating the formation of inner-sphere surface complexes on TiO 2 surfaces.The results of surface complexation models and DFT calculations indicated that the surface species of 60Co(Ⅱ) adsorbed on TiO 2 followed the trend:B structure(i.e.,60Co(Ⅱ) was linked to one bridge oxygen site) was the dominant surface species at low pH,and TT structure(i.e.,60Co(Ⅱ) was linked to two terminal oxygen sites) became the important surface complex at neutral and alkaline pH values.These results demonstrated that a multi-technique approach could lead to definitive information on the structures of adsorbed 60Co(Ⅱ) at the molecular level at the TiO 2 /water interfaces,as well as realistic models to rationalize and accurately evaluate the macroscopic manifestations of radionuclide adsorption phenomena.  相似文献   

10.
A theoretical study on the structural and electronic properties of Li2Si3O7 is performed by using density functional theory(DFT) method.The molecular structure of the crystal and two kinds of [SiO4]-tetrahedra with different number of non-bridging oxygen(Qn) are analyzed.The structure of crystal Li2Si3O7 can be considered as a framework of corner-sharing tetrahedra.From the band structure(BS),total density of state(TDOS) and projected density of state(PDOS) of the crystal,the structures of Q3,Q4,and LiO4 tetrahedra as well as their bonding characters are presented.For lithium trisilicate,we find the bond cation-NBO(nonbridging oxygen and oxygen atoms bonding to one silicon atom only) is stronger than the bond cation-BO(bridging oxygen and oxygen atoms bonding to two silicon atoms).By analyzing the ionicity of two different types of bonds of silicon-oxygen according to the Mulliken population analysis,we also find that the Si-NBO bonds have higher ionicity than Si-BO for crystalline lithium trisilicate,which agrees with other lithium silicates.  相似文献   

11.
Cluster models of SnO2(110) face and oxygen vacancies and oxygen adsorption on its surface have been calculated by EHMO method. The results show that a tin atom with a coordination number of four is the adsorption center, because the total energy of cluster model becomes lower when an oxygen atom adsorpts on the tin atom with a coordination number of four. The tin atom with this coordination number gains and loses electrons more easily than tin atoms with a coordination number of five. All tin atoms in the cluster of SnO2(110) face are Sn4+.  相似文献   

12.
采用基于第一性原理的密度泛函方法对SnO2(110)表面的构型和电子结构进行了系统研究. 结果表明, 与理想表面相比, 表面弛豫导致表层五配位Sn原子向体相方向位移, 六配位Sn原子以及表面氧原子往真空方向移动, 而桥氧原子位置基本保持不变. 当表面厚度小于3 nm时, 表面能和表层原子的弛豫大小随着层数的增加出现振荡现象. 由能带计算结果得知, 以桥氧的2py/2i>pz轨道为主要成分的能带出现在体相的带隙中. 进一步考察了弛豫对表面电子结构的影响.  相似文献   

13.
Mono- and bilayer adsorption of H2O molecules on TiO2 and SnO 2 (110) surfaces has been investigated using static planewave density functional theory (PW DFT) simulations. Potential energies and structures were calculated for the associative, mixed, and dissociative adsorption states. The DOS of the bare and hydrated surfaces has been used for the analysis of the difference between the H2O interaction with TiO2 and SnO 2 surfaces. The important role of the bridging oxygen in the H2O dissociation process is discussed. The influence of the second layer of H2O molecules on relaxation of the surface atoms was estimated.  相似文献   

14.
 用XRD, XPS, CO-TPR, NH3-TPD, SO2-TPD和IR等方法表征了SnO2-TiO2固溶体催化剂的物理化学性质. 不同配比的SnO2和TiO2均可形成均一的具有金红石结构的连续固溶体,其晶粒度比单纯的SnO2或TiO2的晶粒度小. SnO2-TiO2固溶体的比表面积随SnO2含量的增大呈火山形变化,说明在SnO2-TiO2固溶体中SnO2可阻止TiO2由锐钛矿型变为金红石型过程中比表面积的减小,而TiO2则提供了维持大表面的结构框架. SnO2倾向于在固溶体表面偏析,固溶体的表面氧含量高于单纯SnO2的表面氧含量而低于单纯TiO2的表面氧含量. SnO2, TiO2和SnO2-TiO2表面含有能被CO还原的吸附氧和晶格氧,被还原的SnO2, TiO2和SnO2-TiO2的表面晶格氧的数量仅占所有晶格氧的0.001%, 说明CO只使部分晶格氧还原并生成氧阴离子空穴. TiO2表面没有酸性, SnO2和SnO2-TiO2呈微弱酸性. 经CO还原的SnO2-TiO2上存在大量的强碱中心,说明SnO2和TiO2之间发生了协同作用. SnO2-TiO2固溶体的这些物化性质均十分有利于SO2+NO+CO的氧化还原反应.  相似文献   

15.
SnO2是一种具有丰富表面缺位氧的n型半导体,其晶格氧亦可还原.另外其熔点高达1630oC,具有较高的热稳定性能.在过去的几十年中, SnO2主要用作气敏材料.而其作为催化材料的性能,特别是用于大气污染治理则鲜见报道.在过去的几年中,本课题组系统研究了SnO2的催化化学,发现利用传统共沉淀法制备的SnO2纳米粉末,在焙烧温度高于500 oC时,其比表面积通常低于20 m2/g,因而限制了其氧化活性.在SnO2晶格中掺杂Fe、Cr、Mn、Ce和Ta等形成固溶体可有效提高其比表面积并产生更多的活性氧物种,因而其对CO和CH4的氧化活性及稳定性大幅度提高.本课题组近期研究结果表明,采用熔盐法制备的高纯SnO2纳米棒单晶比SnO2纳米颗粒和纳米微球等具有更优异的CO氧化活性,260 oC即可完全氧化CO.且在240–260 oC狭窄温度区间发生转化率突跃,表现出类似贵金属的催化行为.值得指出的是, SnO2纳米棒的比表面积(1 m2/g)远低于其他几种形貌的材料,且无活泼氧存在.但研究表明SnO2纳米棒具有优先暴露的(110)活泼晶面,是导致其活性优良的主要原因.另外,我们采用简单共沉淀法成功制备了高比表面介孔Cu-Sn复合氧化物纳米片(196 m2/g),其在140 oC即可将CO完全氧化,且具有优良的抗水失活性能.因此, SnO2的形貌是影响其催化活性的主要因素之一,但迄今未见较系统深入的研究.在上述工作基础上,本文通过水热法,不添加任何有机模板剂,成功制备了厚度约10 nm的介孔SnO2纳米片和纳米棒及纳米颗粒混合物样品;采用常规共沉淀法制备了SnO2纳米颗粒.并将以上三种不同形貌的SnO2纳米材料用于CO氧化.利用SEM、XRD、N2吸附-脱附、H2-TPR和XPS探讨了不同形貌SnO2催化剂的体相结构和表面性质及其对催化性能的影响.与SnO2纳米颗粒相比,介孔SnO2纳米片具有高的比表面积、孔体积及更活泼的氧中心,因此后者CO氧化活性远高于前者.在空速18000 mL/(g·h)时, SnO2纳米片在260 oC即可完全氧化CO.而SnO2纳米颗粒的CO完全氧化温度高于360 oC. SnO2纳米棒和纳米颗粒的混合样品虽然其比表面积和孔体积及表面活性氧的活性仅略高于SnO2纳米颗粒,但XRD定量结果表明,其具有更多的暴露(110)活泼晶面,因而活性也高于SnO2纳米颗粒. SnO2纳米片催化剂的寿命及抗水性能测试结果表明,该催化剂具有良好的稳定性,且水蒸气仅对其活性产生可恢复的影响.进一步优化其性能, SnO2纳米片有可能用于实际汽车尾气状况下的CO催化清除.  相似文献   

16.
The present study is concerned with the structural and electronic properties of the TiO2/SnO2/TiO2 and SnO2/TiO2/SnO2 composite systems. Periodic quantum mechanical method with density functional theory at the B3LYP level has been carried out. Relaxed surface energies, structural characteristics and electronic properties of the (110), (010), (101) and (00) low-index rutile surfaces for TiO2/SnO2/TiO2 and SnO2/TiO2/SnO2 models are studied. For comparison purposes, the bare rutile TiO2 and SnO2 structures are also analyzed and compared with previous theoretical and experimental data. The calculated surface energy for both rutile TiO2 and SnO2 surfaces follows the sequence (110) < (010) < (101) < (001) and the energy increases as (010) < (101) < (110) < (001) and (010) approximately = (110) < (101) < (001) for SnO2/TiO2/SnO2 and TiO2/SnO2/TiO2 composite systems, respectively. SnO2/TiO2/SnO2 presents larger values of surface energy than the individual SnO2 and TiO2 metal oxides and the TiO2/SnO2/TiO2 system renders surface energy values of the same order that the TiO2 and lower than the SnO2. An analysis of the electronic structure of the TiO2/SnO2/TiO2 and SnO2/TiO2/SnO2 systems shows that the main characteristics of the upper part of the valence bands for all the studied surfaces are dominated by the external layers, i.e., by the TiO2 and the SnO2, respectively, and the topology of the lower part of the conduction bands looks like the core layers. There is an energy stabilization of both valence band top and conduction band bottom for (110) and (010) surfaces of the SnO2/TiO2/SnO2 composite system in relation to their core TiO2, whereas an opposite trend is found for the same surfaces of the TiO2/SnO2/TiO2 composite system in relation to the bare SnO2. The present theoretical results may explain the growth of TiO2@SnO2 bimorph composite nanotape.  相似文献   

17.
Both associative and dissociative H(2)O adsorption on SnO(2)(110), TiO(2)(110), and Ti-enriched Sn(1-x)Ti(x)O(2)(110) surfaces have been investigated at low ((1)/(12) monolayer (ML)) and high coverage (1 ML) by density functional theory calculations using the Gaussian and plane waves formalism. The use of a large supercell allowed the simulation at low symmetry levels. On SnO(2)(110), dissociative adsorption was favored at all coverages and was accompanied by stable associative H(2)O configurations. Increasing the coverage from (1)/(12) to 1 ML stabilized the (associatively or dissociatively) adsorbed H(2)O on SnO(2)(110) because of the formation of intermolecular H bonds. In contrast, on TiO(2)(110), the adsorption of isolated H(2)O groups ((1)/(12) ML) was more stable than at high coverage, and the favored adsorption changed from dissociative to associative with increasing coverage. For dissociative H(2)O adsorption on Ti-enriched Sn(1-x)Ti(x)O(2)(110) surfaces with Ti atoms preferably located on 6-fold-coordinated surface sites, the analysis of the Wannier centers showed a polarization of electrons surrounding bridging O atoms that were bound simultaneously to 6-fold-coordinated Sn and Ti surface atoms. This polarization suggested the formation of an additional bond between the 6-fold-coordinated Ti(6c) and bridging O atoms that had to be broken upon H(2)O adsorption. As a result, the H(2)O adsorption energy initially decreased, with increasing surface Ti content reaching a minimum at 25% Ti for (1)/(12) ML. This behavior was even more accentuated at high H(2)O coverage (1 ML) with the adsorption energy decreasing rapidly from 145.2 to 101.6 kJ/mol with the surface Ti content increasing from 0 to 33%. A global minimum of binding energies at both low and high coverage was found between 25 and 33% surface Ti content, which may explain the minimal cross-sensitivity to humidity previously reported for Sn(1-x)Ti(x)O(2) gas sensors. Above 12.5% surface Ti content, the binding energy decreased with increasing coverage, suggesting that the partial desorption of H(2)O is facilitated at a high fractional coverage.  相似文献   

18.
采用溶胶-水热法制备了不同尺寸的SnO2纳米粒子, 并将其作为表面增强拉曼散射(Surface-enhanced Raman scattering, SERS)活性基底, 重点探讨了表面缺陷能级与SERS性能的关系. 观察到4-巯基苯甲酸(4-MBA)吸附在150 ℃水热合成的SnO2纳米粒子上的SERS 信号最强, 随着在空气中煅烧温度的升高, SERS信号逐渐减弱. 分别用透射电子显微镜、 紫外-可见光谱、 荧光光谱、 X射线衍射和X射线光电子能谱对SnO2纳米粒子进行了表征. 结果表明, SnO2纳米粒子的表面氧空位和缺陷等表面性质在增强拉曼散射性能中发挥着重要的作用, 表面氧空位和缺陷等含量越高其SERS信号就越强.  相似文献   

19.
Proton jump processes in the hydration layer on the iso-structural TiO(2) rutile (110) and SnO(2) cassiterite (110) surfaces were studied with density functional theory molecular dynamics. We find that the proton jump rate is more than three times faster on cassiterite compared with rutile. A local analysis based on the correlation between the stretching band of the O-H vibrations and the strength of H-bonds indicates that the faster proton jump activity on cassiterite is produced by a stronger H-bond formation between the surface and the hydration layer above the surface. The origin of the increased H-bond strength on cassiterite is a combined effect of stronger covalent bonding and stronger electrostatic interactions due to differences of its electronic structure. The bridging oxygens form the strongest H-bonds between the surface and the hydration layer. This higher proton jump rate is likely to affect reactivity and catalytic activity on the surface. A better understanding of its origins will enable methods to control these rates.  相似文献   

20.
用直流气体放电活化反应蒸发法在玻璃基片上沉积的SnO2超微粒薄膜,研究其过程中各工艺参数对薄膜结构的影响及作用机理.结果表明, SnO2超微粒薄膜粒径随氧分压增加而增大;蒸镀时间的延长有助于SnO2的生成,也使薄膜发生晶化;而增加放电电压,则薄膜出现外延单晶生长趋势.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号