首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
液态Ca7Mg3合金快速凝固过程中团簇结构的形成特性   总被引:2,自引:0,他引:2  
采用分子动力学方法对液态Ca7Mg3合金凝固过程中团簇结构的形成特性进行了模拟研究. 采用双体分布函数、Honeycutt-Andersen(HA)键型指数法、原子团类型指数法(CTIM)以及遗传跟踪等方法对凝固过程中团簇结构的形成演变特性进行了分析. 结果表明: 在以冷速为1×1012 K·s-1 的快速凝固条件下, 系统形成以1551、1541、1431键型为主的非晶态结构; 二十面体基本原子团(12 0 12 0)在快速凝固过程中对非晶态结构的形成起决定性作用; 在合金凝固过程中, 团簇的稳定性不仅与构成团簇的基本原子团类型有关, 还与中心原子类型以及中心原子之间的连接方式有关. 由于(12 0 12 0)基本原子团能量较低并且在低温具有较好的遗传特性, 基本原子团之间很容易连接在一起组成更大的团簇. 所形成的团簇结构显著不同于那些由气相沉积、离子溅射等方法所获得的团簇结构.  相似文献   

2.
液态金属Al凝固过程中的团簇结构与幻数特性   总被引:5,自引:0,他引:5  
采用分子动力学方法,对含有100000个Al原子的液态金属系统在凝固过程中团簇结构的形成特性进行了模拟研究,并采用原子团类型指数法(CTIM)来描述各种类型的团簇结构组态.研究结果显示:在液态金属Al的凝固过程中,只有与1551键型相关的二十面体原子团(12 0 12 0)及其组合形成的各种团簇结构,对微结构的演变起着关键的、决定性的作用;由不同数目、不同类型基本原子团组成的各种层次的团簇结构,都在一定的原子数区段内呈现出峰值,即幻数点;系统的幻数序列为:13(13), 19(21), 25~28(27), 31~33(29~30) ,37、39,…(括号内为液态时对应的幻数值),与Harris等人的实验结果甚为相符.本模拟研究所用的团簇结构按层次区段来研究幻数序列的方法,可为实验结果提供更为合理的模型解释.  相似文献   

3.
使用Tight-binding势函数, 对FCC-Ni升温熔化过程的结构变化进行了分子动力学模拟. 在定压条件下模拟得到的Ni的熔点在1850 K与1900 K之间. 计算得到了体系在各温度下的径向分布函数和配位数分布等静态结构信息以及动力学性质. 计算得出的液体Ni的扩散系数在1900 K时约为5.02×10−9 m2•s−1, 与实验数据相符. 对液态体系中FCC短程有序结构可能发生的畸变以及由此导致的H-A键型变化进行了分析, 结合配位体构型搜索和键对分析方法计算了各温度下不同短程有序结构的分布. 计算表明, Ni在熔化之后仍保留有部分晶态短程结构, 但发生了较大的畸变, 同时液态中有少量的缺陷二十面体结构存在. 而液体Ni中大多数的配位体的几何构型介于FCC与缺陷二十面体之间.  相似文献   

4.
冯翠菊 《分子科学学报》2014,(2):124-125,127,126,128,130
基于第一性原理,利用密度泛函理论中广义梯度近似(GGA)对团簇Cun-1Ni和Cun(n=3-14)进行了结构优化和能量计算,结果表明,单质Cu团簇不是以密实结构而是以类平面结构生长,但Ni的掺杂使得Cu团簇结构以二十面体为基础生长并且增加了团簇的稳定性;团簇结合能的二阶差分计算表明Cu3Ni,Cu7Ni和Cu9Ni结构最为稳定;在团簇的最稳定结构中Ni原子趋于占据团簇的中心位置和更多的Cu原子形成化学键;位于表面的Cu原子成为Mülliken电荷的接受体而带负电性,这也可能是Ni掺杂Cu合金耐腐蚀性增强的原因之一;Ni的掺杂使原来没有磁性的铜团簇显示了磁性且总自旋磁矩表现明显的奇偶振荡,为1或2μB,与团簇的尺寸无关.  相似文献   

5.
用分子动力学模拟研究了液态金属Al 系统的热历史对凝固微结构的影响.发现在同一系统中、不同的热历史条件下, 1551 键型和与1551键型相关的二十面体结构(12 0 12 0)在微结构的转变过程中均起着非常重要的作用. 特别有意义的是, 在每个温度的等温运行中能够重复出现的二十面体的数目不随温度的降低而增加, 并有一个极大值.该极大值点正好与其玻璃转变温度Tg相对应, 在不同的热历史条件下极大值的位置是能够移动的.结果还显示出, 热历史条件对微结构转变有严重影响, 且其作用主要是在玻璃转变温度点Tg以后才显示出来. 这就为我们理解和控制凝固过程中的微结构转变提供了一条新途径.  相似文献   

6.
黄敏  徐畅  程龙玖 《化学学报》2016,74(9):758-763
采用遗传算法(Genetic algorithm,GA)对B-Al二元团簇[BxAl13-x]-x=0~13)进行了全局结构搜索,并在密度泛函理论(Density Functional Theory,DFT)下对其进行了优化计算. 结果表明在二元团簇中,随着硼原子的数量逐渐增加,团簇的结构由二十面体(3D)逐渐转化为准平面(2D)且团簇结构由B与Al原子的比例所决定的. 当x=0~7时,Al原子占多数,团簇保持3D结构;反之团簇呈现2D构型;在x=7~8时,团簇的结构发生由3D向2D的转变. 能量决定着团簇的稳定性(例如相对能量). 能量越小,其结构越稳定. 在计算相对能量Erel,当x=1时,其相对能量最低,团簇结构最稳定. 为了进一步了解团簇的稳定性,计算了[BxAl13-x]- 团簇的HOMO-LUMO能级差(EH-L)和垂直电离能(Vertical Detachment Energies,VDE),并且发现它们的值在整体上是随着B原子数量的增加而减小,表明其团簇的稳定性逐渐减弱. 在所有的团簇中,BAl12-的能级差最大,结构最稳定. 因此文章中对其进行了分子轨道分析,发现当一个B原子替代了Al13-团簇中的中心Al原子时,所得到的BAl12-的电子壳层结构的1s2和1p6几乎和Al13-团簇保持一致. 此外,对于x=13时的准平面全硼团簇B13-,文章中用适应性自然密度划分(Adaptive Natural Density Partitioning,AdNDP)对其化学成键进行了分析,结果显示B13-有8个π电子,具有π反芳香性.  相似文献   

7.
采用F-S多体势对液态合金Al3Ni和Ni3Al在不同冷却速度下的微观结构及其转变机制进行了分子动力学模拟,得到了不同冷速下各温度的双体分布函数;采用HA键型指数法对其结构进行了分析,结果表明: Al3Ni在两种冷速下均以非晶的形式出现,只是慢冷时体系的有序度略有升高;而Ni3Al的结构及能量转变受冷速影响较大,快冷时形成非晶,而慢冷时出现明显结晶;同样冷速下Al含量较少的Ni3Al体系的有序度高,更易形成晶体,晶体的形成过程中有能量突变.  相似文献   

8.
基于密度泛函理论和卡利普索结构预测方法,在B3PW91/LanL2DZ水平下,系统研究了Sc13,Sc12Co和Sc12Ni团簇的几何结构、磁性和光谱特性.结果表明,Sc13基态拥有高对称性的二十面体Ih点群对称结构,Sc12Co和Sc12Ni团簇基态结构是分别以Co和Ni为中心的畸变二十面体结构.基于上述基态结构,电荷转移分析发现电荷从Sc原子向Ni或Co原子转移.磁性分析表明Sc13团簇的高磁性主要源于Sc—Sc之间的铁磁性耦合和较大的自旋劈裂.对于Sc12Co和Sc12Ni团簇,Sc—Ni和Sc—Co各原子之间的反铁磁性耦合、较小的自旋劈裂及原子间的电荷转移量是磁性偏低的原因.而且,总磁矩主要来源于Sc-3d轨道上的自旋磁矩贡献,4s和4p轨道上的自旋磁矩贡献非常小.最后,研究发现Sc12Co和Sc12Ni团簇的红外和拉...  相似文献   

9.
采用分子动力学模拟技术,以液态金属Ni为例,研究了在不同冷却条件下形成晶体及非晶的过程.模拟采用镶嵌原子法(EAM)作用势,得到了不同温度、不同冷却速度下Ni的径向分布函数以及原子组态变化的重要信息,利用键对分析技术探讨了二十面体准晶对非晶形成的影响.  相似文献   

10.
金属间化合物Al~3Fe熔体结构的温度变化特性研究   总被引:5,自引:0,他引:5  
利用分子动力学模拟技术,详细考察了在快速凝固条件下AL~3Fe熔体结构的温度变化特征。结果表明:Al~3Fe熔体中存在不同类型的原子基团.原子集团是以各种各样的键对和多面体的形式存在的.利用键对分析技术,计算出了不同温度下的键对类型数和二十面体的两类键取向序参数,分析了Al-Fe合金在快速凝固条件下非晶形成的演化特点。  相似文献   

11.
利用高温X射线衍射研究了CuAlNi合金液态结构,发现结构因子上有明显的预峰出现,随着温度的升高,Cu75Al25合金熔体结构因子的预峰减弱, 直到1300 ℃预峰消失,这表明中程有序原子团簇可以在高于液相线温度约250 ℃范围内存在,原子团簇的大小和数量都随着Ni的加入而增加,Ni增强原子之间的交互作用,有利于中程有序的形成,根据预峰的特性,提出CuAlNi合金液态结构的原子模型,即由八面体结构共享顶点形成的原子团簇与无规密堆积原子分布区域组成.  相似文献   

12.
金属Cu液固转变及晶体生长的分子动力学模拟   总被引:7,自引:0,他引:7  
采用分子动力学模拟研究了液态Cu在不同冷却速度下的凝固特点,模拟采用EAM作用势,计算了不同温度,不同冷却速度下Cu的偶相关函数,结果表明EAM作用势能很好地描述液态Cu的结构特征,当冷却速度较快时,液Cu形成非晶;当冷却速度较慢时,液Cu形成晶体,分析了不同冷却速度下体系的相变热力学及相变动力学过程,最后采用液固两层构型法,描述了Cu晶体的生长过程。  相似文献   

13.
Icosahedral clusters in Ti and Ni are studied with first-principles density functional calculations. We find significant distortion on the Ti icosahedron caused by the strong interaction between surface atoms on the icosahedron but not between the center atom and surface atoms, whereas no such distortion is observed on Ni clusters. In addition, distortion becomes more severe when atoms are added to the Ti(13) cluster resulting in short bonds. Such distorted icosahedra having short bonds are essential in explaining the structure factor of Ti liquid obtained in experiment.  相似文献   

14.
自由表面的Ni原子团簇的熔化   总被引:3,自引:0,他引:3  
王丽  杨华  边秀房  李喜珍 《物理化学学报》2001,17(12):1097-1101
采用分子动力学模拟技术研究了不同尺寸的Ni原子团簇的熔化过程.团簇的最初构型为FCC结构.研究结果表明,原子团簇的熔化温度与原子团簇中原子的个数有关,团簇的熔化首先从表面开始,当外层原子成为液态后,整个团簇的熔化从液态层开始,直至核心区域.该熔化过程可以被称为非均质熔化,自由表面充当非均质形核位置.作为对比,对无自由表面的大块固态Ni的熔化过程也进行了模拟,其熔化温度高于实验温度约400 K.表明对无自由表面的大块固态的熔化过程,液相形成无非均质形核位置,熔化的本质过程受均质形核机理控制.  相似文献   

15.
Cu-12%Al合金熔体内中程有序原子团簇   总被引:2,自引:0,他引:2  
通过高温X射线衍射仪研究了Cu 12%Al(质量分数,下同)合金熔体结构,并用纯铜作对比实验.在1250 ℃时,发现Cu 12%Al合金熔体结构因子曲线上18.5 nm-1位置有预峰出现.随着温度的下降,预峰变得更加明锐.预峰的出现是液体中存在中程有序的标志.通过熔态旋淬法获得该合金的快速凝固条带,对条带进行固态X射线衍射分析,其结构是具有有序体心立方晶格的Cu3Al.熔体内的中程有序结构单元尺寸与快凝Cu3Al(111)晶面面间距d111数值一致.由双体分布函数得到的最近邻原子距离、配位数.结合原子团簇结构单元的几何模型,计算得出该体心立方的棱边长(a=3.00 10-10m)与文献中所提供的固态晶格常数(a=2.95 10-10 m)基本吻合.可证明该合金熔体中存在以DO3结构为基本单元的中程有序原子团簇,在液相线以上200 ℃温度范围内这种中程有序都能稳定存在,并随着温度的下降,中程有序的相关尺寸逐渐增大.  相似文献   

16.
液铜快速冷却过程微观结构演变的计算机模拟   总被引:2,自引:0,他引:2  
张弢  吴爱玲  管立  齐元华  徐昌业 《化学学报》2003,61(9):1357-1361
利用计算机模拟了在周期性边界条件下由500个原子构成的液态Cu模型系统以 4.2 * 10~(13) K/s的速率快速凝固的全过程。模拟在FS相互作用势的基础上,通 过双体分布函数、键对分析技术、键取向序等多种方法,对液Cu快冷凝固过程的微 观结构转变特性作了分析,给出了连续快速冷凝过程中液Cu原子间依靠相互作用力 形成的独特的微观结构图像。模拟结果重现了实验值,且表明在快速冷却过程中液 Cu没有形成body center cubic结构的倾向。  相似文献   

17.
Al纳米线凝固过程的分子动力学模拟   总被引:2,自引:0,他引:2  
结合EAM镶嵌原子作用势, 通过经典的分子动力学模拟研究了不同冷却速率下Al纳米线的凝固行为, 并采用键对分析技术探讨了体系中的原子团簇在不同冷却速率下的转化情况. 结果表明, 随着冷却速率的降低, Al纳米线的微观结构从非晶态过渡到多壳螺旋结构, 而多壳螺旋结构具有部分非晶结构的特征, 但是比非晶结构更稳定. 此外, 在冷却速率降低到1×109 K·s-1的情况下, Al纳米线仍然保持多壳螺旋结构.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号