首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of pure and high silica Hβ zeolites on the catalytic performance of toluene combustion over Pd/H/3 catalyst was evaluated.Pure and high silica β zeolites were prepared by direct synthesis procedures,then 0.1 wt% of palladium was impregnated on different Hβ zeolites via incipient wetness technique using palladium nitrate as the Pd source.The Pd/Hβ catalysts were characterized by XRD,N2 adsorption/desorption,H2O adsorption,NH3-TPD,H2-TPR and XPS techniques.With increasing the SIO2/Al2O3 ratio of β zeolite,the activity of the Pd/Hβ catalysts for toluene combustion increased clearly and the pure silica β zeolite supported Pd catalyst showed the best catalytic activity.The superior catalytic performance of Pd/β catalyst prepared from pure silica β zeolite was attributed to its high hydrophobicity and the preserving ability for PdO active species.  相似文献   

2.
The activity of knitted silica-fibre supported Pd, Pt, Pt-Ni, Pd-Ni and Pd-Pt-Ni catalysts as well as Pd based H-ZSM-5 and H-ZSM-35 catalysts was studied in the conversion of gas mixtures containing 200 ppm CH4, 2500 ppm CO, 500 ppm pyridine (or 500 ppm NO), 10 vol.% O2 (or 0.155 vol.% O2), 12 vol.% CO2, 12 vol.% H2O, balanced with He at GHSV of 60000 h–1. Pyridine was found to inhibit both CO and CH4 oxidation. IR studies indicated that NO adsorbed on Pd2+ is the principal adsorbed species on the Pd/HZSM-5 catalyst.  相似文献   

3.
Three kinds of H-ZSM-5 zeolite capsule catalysts were prepared on Co/SiO2 catalyst pellets of different sizes. Characterization of the catalysts indicated that a defect-free H-ZSM-5 membrane had been constructed successfully on the Co/SiO2 surface. The smaller Co/SiO2 pellets were favorable for zeolite capsule growth under the same synthesis conditions. Zeolite capsule catalysts, especially the catalysts with smaller pellet sizes, had a higher isoparaffin selectivity compared with conventional FTS Co/SiO2 catalyst and mixed catalyst of Co/SiO2 with H-ZSM-5 zeolite.  相似文献   

4.
In this study, palladium silicide was formed on the sol–gel derived SiO2 supported Pd catalysts when they were prepared by ion-exchange method using Pd(NH3)4Cl2 as a palladium precursor. No other palladium phases (PdO or Pd0) were evident after calcinations at 450 °C for 3 h. The Pd/SiO2 catalysts with Pd silicide formation were found to exhibit superior performance than commercial SiO2 supported ones in liquid-phase semihydrogenation of phenylacetylene. From XPS results, the binding energy of Pd 3d of palladium silicide on the Pd/SiO2 catalyst shifted toward larger binging energy, indicating that Pd is electron deficient. This could probably result in an inhibition of a product styrene on the Pd surface and hence high styrene selectivities were obtained at high phenylacetylene conversions. The formation of Pd silicide, however, did not have much impact on specific activity of the Pd catalysts since the TOFs were quite similar among the various catalysts with or without palladium silicides if their average particle sizes were large enough. The TOFs decreased by an order of magnitude when palladium dispersion was very high and their average particle sizes were smaller than 3–5 nm.  相似文献   

5.
A series of precipitants and commercial surfactants (soft templates) were employed to synthesize mesoporous/nano CeO2 by a hydrothermal method. As-prepared CeO2 was impregnated with palladium and employed for low-temperature catalytic oxidation of CO. It was found that both soft templates and precipitants had significant effects on the morphology, particle size, crystallinity, and porous structure of the CeO2, having a significant effect on the surface palladium abundance, molar ratios of surface species, and catalytic activity of the final impregnated Pd/CeO2. Using ammonia as precipitant could facilitate increased surface palladium abundance and surface molar ratios of PdO/Pd SMSI , Ce3+/(Ce3+ + Ce4+), and Osurface/Olattice. The catalytic activity of the final Pd/CeO2 catalysts could be enhanced as well. The optimal P123-assisted ammonia-precipitated Pd/CeO2 catalyst exhibited over 99% catalytic conversion of CO at 50 °C.  相似文献   

6.
When a single metal fails to promote an efficient Suzuki‐Miyaura coupling reaction at ambient temperature, the synergistic cooperation of two distinct metals might improve the reaction. To examine the synergistic effect of palladium and nickel for catalyzing Suzuki coupling reaction, g‐C3N4 supported metal nanoparticles of PdO, NiO and Pd‐PdO‐NiO were prepared, characterized and their catalytic activities evaluated over different aryl halides at room temperature and 78 °C. The morphological characterization of Pd‐PdO‐NiO/g‐C3N4 demonstrated that the bimetallic particles were uniformly dispersed over the g‐C3N4 layers with diameters ranging from 3.5‐7.7 nm. XPS analysis showed that nanoparticles of Pd‐PdO‐NiO consisted of Pd(II), Pd(0) and Ni(II) sites. The experiments performed on the catalytic activity of Pd‐PdO‐NiO/g‐C3N4 showed that the prepared catalyst demonstrated an efficient activity without using toxic solvents.  相似文献   

7.
Transformation of surface nitrates under CH4 (CH4+O2) was found to ensure steady-state activity of Co-ZSM-5 in the selective catalytic reduction of nitrogen oxides by methane (CH4-SCR). For Cu-ZSM-5, such species are mainly converted into NO. Relaxation of the coordination sphere due to oxygen and NO adsorption, stability of C,N-containing intermediates and activation routes of hydrocarbons (methane, propane) were analyzed as factors determining catalytic properties of Cu and Co cations.  相似文献   

8.
Pd/NaZSM-5负载型催化剂上CO完全氧化研究   总被引:7,自引:2,他引:5  
毕玉水  刘建福  吕功煊 《化学学报》2002,60(9):1624-1629
采用浸渍法制备了一系列Pd/NaZSM-5负载型催化剂。考察了焙烧温度、反应温 度、Pd含量及预还原等对CO氧化性能的影响。结果表明:制备条件和反应条件对催 化活性均有较大影响,催化剂的活性随着焙烧温度的增加而降低,随反应温度及 Pd含量的增加而增加。XRD,TEM结果表明催化剂中Pd组分处于高分散状状;表面 XPS分析证实催化剂表面Pd物种PdO_2和PdO在反应过程中发生明显的表面化学变化 ,高价Pd物种随反应的进行逐步被CO还原为低价Pd物种,催化剂活性下降与Pd物种 被还原有关。H_2预还原作用也导致催化剂活性有所下降。  相似文献   

9.
A metal-support interaction between Pd and various kinds of zeolite and metal oxide supports was studied, which were active in the catalytic combustion and selective reduction of NO. The acid-base properties of supports affected the oxidation state, structure and catalytic activity of Pd. The acid sites of zeolite played the role to anchor the dispersed PdO as evidenced by the dynamic structural change of Pd. It was found that the metal-support interaction is an important factor, affecting the oxidation state, structure and catalytic performance of Pd.  相似文献   

10.
Highly dispersed palladium nanoclusters incorporated on amino‐functionalized silica sphere surfaces (Pd/SiO2‐NH2) were fabricated by a simple one‐pot synthesis utilizing 3‐(2‐aminoethylamino)propyltrimethoxysilane (AAPTS) as coordinating agent. Uniform palladium nanoclusters with an average size of 1.1 nm can be obtained during the co‐condensation of tetraethyl orthosilicate and AAPTS owing to the strong interaction between palladium species and amino groups in AAPTS. The palladium particle size can be controlled by addition of AAPTS and plays a significant role in the catalytic performance. The Pd/SiO2‐NH2 catalyst exhibits high catalytic activity for succinic acid hydrogenation with 100% conversion and 94% selectivity towards γ‐butyrolactone using 1,4‐dioxane as solvent at 240°C and 60 bar for 4 h. Moreover, the Pd/SiO2‐NH2 catalyst is robust and readily reusable without loss of its catalytic activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
There have been many studies on the catalysis of selective catalytic reduction of nitric oxide with hydrocarbons. It was shown in our previous works that Ir/In/H-ZSM-5 has high catalytic activity and selectivity for this reaction by use of methane as a reductant. The reaction of CH4 -SCR proceeds consecutively as NO oxidation to NO2 and NO2 reduction with CH4 . These two reactions take place bifunctionally on different kinds of catalytic sites: NO oxidation on Ir and NO 2 reduction on InO+ sites. The studies of NOx chemisorption and kinetics of NOx reduction with CH4 lead us to conclude that the bifunctional catalysis is remarkably facilitated by the coexistence of these sites in the identical pores of zeolite, which may be called "intrapore catalysis". In this review, the design of highly active and selective catalysts for this reaction system will be discussed on the basis of bifunctionality.  相似文献   

12.
制备方法对Co-MOR催化剂CH4选择还原NO性能的影响   总被引:1,自引:0,他引:1  
采用离子交换法、浸渍法制备一系列的Co-MOR 催化剂, 并将其用于CH4选择性催化还原 NOx(CH4-SCR)反应. 运用X 射线衍射(XRD)、X 射线荧光光谱(XRF)、扫描电子显微镜(SEM)、紫外-拉曼(UVRaman)光谱、X射线光电子能谱(XPS)、NO程序升温脱附(NO-TPD)等手段对催化剂进行了表征. 结果表明, 浸渍法制备的催化剂, Co以Co3O4形式存在; 而离子交换法制备的催化剂, Co以离子形式进入丝光沸石(MOR)骨架之中, 在催化剂上形成更多的Co2+和[Co-O-Co]2+, 形成更均匀NO吸附中心和CH4-SCR反应活性中心. 催化剂活性评价表明离子交换法制备的催化剂具有更宽的活性温度区间, Co(0.30)-MOR 催化剂在327-450℃温度范围内NO转化率大于50%.  相似文献   

13.
Although zeolites are characterized by their special acidic properties, there is still no clear consensus on the effect of zeolite support acidity on the catalytic activity of supported Pd catalyst in methane oxidation. Herein, a series of Pd/H-ZSM-5 and Pd/Silicalite-1 catalysts was prepared by the deposition-precipitation method and used in lean methane oxidation. The effect of ZSM-5 support acidity on the catalytic performance of Pd/ZSM-5 was investigated. The results indicate that with the decrease of Si/Al ratio(x), viz., the increase of acid sites in H-ZSM-5(x), the catalytic activity of Pd/H-ZSM-5(x) increases substantially; the activity of various catalysts in the lean methane oxidation decreases in the order of Pd/H-ZSM-5(28)>Pd/H-ZSM-5(48)>Pd/H-ZSM-5(88)>Pd/H-ZSM-5(204)>Pd/Silicalite-1. Furthermore, various characterization measures reveal that the catalytic activity of Pd/H-ZSM-5(x) in lean methane oxidation is mainly related to the Lewis acid sites in the H-ZSM-5 support, whereas less relevant to the Brønsted acid sites. The abundant Lewis acid sites in H-ZSM-5 are capable to enhance the interaction between the Pd species and H-ZSM-5 support, which can inhibit the agglomeration of Pd particles and improve the dispersion of Pd species, and thus boost the catalytic activity of Pd/H-ZSM-5 in methane oxidation.  相似文献   

14.
PdO/Al2O3 catalysts prepared by glow discharge plasma treatment followed by thermal calcination show a much higher dispersion and a better catalytic activity for methane combustion at relatively low temperatures. The dispersion of palladium active species by such plasma prepared catalysts is 29.7%, 5.4 times higher than that of conventional catalysts. XPS analysis indicates that a surface enrichment of Pd active species (PdO) has been achieved after plasma treatment. The surface atomic composition of PdO of plasma prepared catalysts reaches 10.5%. XRD characterization also confirms a wellcrystallized PdO phase present on the plasma prepared catalyst. The lightoff temperature of the plasma prepared catalyst is 370°C, 50°C lower than that obtained from the conventional catalyst.  相似文献   

15.
The effects of palladium precursors (PdCl2, (NH4)2PdCl4, Pd(NH3)2Cl2, Pd(NO3)2 and Pd(CH3COO)2) on the catalytic properties in the selective oxidation of ethylene to acetic acid have been investigated for 1.0 wt% Pd–30 wt% H4SiW12O40/SiO2. The structures of the catalysts were characterized using X-ray diffraction, N2 adsorption, H2-pulse chemical adsorption, infrared spectrometry of the adsorbed pyridine, H2 temperature-programmed reduction and X-ray photoelectron spectroscopy. The present study demonstrates that the different palladium precursors can lead to the significant changes in the dispersion of palladium. It is found that Pd dispersion decreases as follows: PdCl2 > (NH4)2PdCl4 > Pd(NO3)2 > Pd(NH3)2Cl2 > Pd(C2H3O2)2, which is nearly identical to the catalytic activity. This indicates that the dispersion of palladium plays an important role in the catalytic activity. Furthermore, density of Lewis (L) and Brönsted (B) acid sites are also strongly dependent on the palladium precursors. It is also demonstrated that an effective catalyst should possess a well combination of Brönsted acid sites with dispersion of palladium.  相似文献   

16.
Najar  H.  Saïd Zina  M.  Ghorbel  A. 《Kinetics and Catalysis》2010,51(4):602-608
Palladium-based catalysts were prepared by the ion-exchange method with dealuminated HY zeolite as support. The support dealumination was realised using acid solution of HNO3, HCl or H2SiF6. The high activity of prepared catalysts for methane combustion was observed. This activity was dependent on the Al concentration, structural and textural properties of the support changed after the dealumination. Especially, Pd loaded on supports developing a second pore system, and having the highest Si/Al ratio, was more active than that on unmodified supports. It was also expected that the active sites in the methane combustion, which are suspected to be PdO, were influenced by the acidic properties of the support.  相似文献   

17.
Regularities of formation of a palladium oxide layer and its cathodic reduction in 0.5 M H2SO4 at 0.5–1.3 V (SHE) are studied by cyclic voltammetry, x-ray photoelectron spectroscopy, and electrochemical quartz crystal microbalance. A pure Pd plate and a 0.5-m-thick Pd coating on gold-sputtered quartz crystal is used for electrochemical and microgravimetric studies. It is shown that a Pd electrode dissolves electrochemically in 0.5 M H2SO4 when its potential is cycled between 0.5 and 1.3 V. In the case of 0.5-m-thick Pd coating on the gold substrate, the decrease in the electrode weight during one anodic–cathodic cycle is 1.0–1.5 g/cm2. It is suggested that anodic process at 0.5–1.3 V (SHE) represents electrochemical oxidation of palladium, yielding a surface layer of poorly soluble Pd(OH)2 and/or PdO phases, as expressed by the equation Pd + 2H2O (Pd(OH)2/PdO)s + 2H+ + 2e. This surface layer, (Pd(OH)2/PdO)s, undergoes reduction during the cathodic process. About 5% of the total amount of ionized palladium dissolve in electrolyte.  相似文献   

18.
Monometallic and bimetallic catalysts based on palladium and copper deposited on a spinel carrier have been investigated in the catalytic combustion of methane. Great differences were found in catalytic activity, according to the sequence Pd/MgAl2O4>CuO–Pd/MgAl2O4>Pd–CuO/MgAl2O4>CuO/MgAl2O4. They were explained by changes in surface composition of the catalysts. In the case of bimetallic catalysts the metallic surface is preferentially enriched in copper, which acts as a diluting agent for the Pd atom ensembles. As a consequence, the adsorption of reactants is limited and the catalysts so obtained behave like copper slightly doped with palladium.  相似文献   

19.
Pd particles loading on TiO2-embedded multi-walled carbon nanotubes (MWCNTs), MWCNTs, and TiO2 particles were prepared via an impregnation method with palladium(II) chlorate solution followed by heat treatment at high temperature. To characterize the catalysts, BET surface area, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, energy dispersive X-ray, Fourier transform infrared spectroscopy and ultraviolet-visible spectroscopy were employed. The prepared catalysts were tested in degradation of methyl orange under visible light. Pd/TiO2-MWCNTs catalyst demonstrates the highest photocatalytic activity, and the phase transformation from PdO to Pd0 phase takes place at heat treatment of embedded TiO2. The nanoparticles size of TiO2 can be decreased by introduction of MWCNTs species. Combining structural characterization with kinetic study results we could conclude that the superior catalytic performance could arise due to the Pd/TiO2-MWCNTs catalyst’s structure.  相似文献   

20.
We prepared Pd catalysts supported on various metal oxides, viz. γ-Al2O3, α-Al2O3, SiO2–Al2O3, SiO2, CeO2 and TiO2 by an incipient wetness method and applied them to propane combustion. Several techniques: N2 physisorption, inductively coupled plasma-atomic emission spectroscopy (ICP-AES), CO chemisorption, temperature-programmed reduction (TPR) and temperature-programmed oxidation (TPO) were employed to characterize the catalysts. Pd/SiO2–Al2O3 showed the least catalytic activity at high temperatures among Pd catalysts supported on irreducible metal oxides, viz. SiO2, Al2O3 and SiO2–Al2O3. Pd/γ-Al2O3 was much superior for this reaction to Pd/α-Al2O3. The Pd catalyst supported on reducible metal oxides (CeO2 and TiO2) with a less specific surface area showed the higher catalytic activity compared with that supported on reducible metal oxides with a higher specific surface area, even though the former had a less Pd dispersion than the latter. In the case of Pd/SiO2–Al2O3, the initially reduced Pd catalyst was superior to the fully oxidized one. The oxidation of metallic Pd occurred in the presence of O2 with increasing reaction temperature, which resulted in the change in the catalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号