首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
电化学混合电容器用新型聚吡咯/介孔碳纳米复合电极   总被引:1,自引:0,他引:1  
采用介孔碳CMK-3作为载体,通过化学原位聚合的方法制备出一种新型的聚吡咯/介孔碳(PPy-CMK-3)纳米复合材料.将该纳米复合材料作为正极,配以介孔碳CMK-3为负极和1.0mol·L-1NaNO3中性电解液,组装成为电化学混合电容器.电化学测试表明:在5.0mA·cm-2电流密度和1.4V充放电电位条件下,其放电比容量达57F·g-1,电容器功率密度为2.5×102W·kg-1,能量密度达17Wh·kg-1.当电流密度从5.0mA·cm-2增加至50mA·cm-2时,电容器的容量保持率在80%以上,显示高倍率充放电特性优异.此外,聚吡咯-介孔碳/介孔碳电化学混合电容器易活化,并具有优异的充放电效率和良好的循环稳定性能.  相似文献   

2.
应用金属有机配合物作前驱体,煅烧制备有稳定结构的介孔NiO电极.TEM孔径分布及电化学测试表明,该电极结构规整,平均孔径为30 nm.在2.0 A·g-1电流密度下,比电容为72 F·g-1.1000次循环后,几乎无衰减,而且其表面介孔结构相当稳定.  相似文献   

3.
采用中性Li2SO4水溶液代替H2SO4和KOH作为电解液制备了活性炭(AC)基对称型超级电容器,使水系超级电容器的工作电压由1.0V提高到了1.6V.采用循环伏安和充放电测试研究了电容器的稳定电化学窗口.电化学充放电测试表明电容器在0.25A.g-1电流密度下单电极比容量可达129F.g-1,在功率密度为160W.kg-1时能量密度达到10Wh.kg-1(以正负极活性物质的总质量计).1.6V恒压充电1h后电容器漏电流为0.22mA.超级电容器的库仑效率接近100%,充放电循环5000次后容量仍可保持在92%以上.研究了电解液的浓度对电容器电化学性能的影响,发现随着Li2SO4浓度的增大电容器的电荷转移电阻显著减小,大电流充放电性能提高.活性炭基Li2SO4水系电解液超级电容器具有工作电压高、能量密度高和对环境友好等优点,因此有很好的产业化前景.  相似文献   

4.
以惰性盐KCl为模板、硝酸镍为金属催化剂镍源、葡萄糖为碳源,通过碳化处理制备了介孔石墨化碳片。利用扫描电子显微镜、透射电子显微镜、X-射线衍射仪和比表面测试仪对介孔石墨化碳片进行了表征。探讨了碳片形成的机理,采用三电极测试体系研究了介孔石墨化碳片电极材料的电化学性能。结果表明,10 g KCl制备的碳片比表面积最大(989 m2·g-1),在6 mol·L-1KOH电解液中,当电流密度为0.5 A·g-1时,比电容达到180 F·g-1;当电流密度达到10 A·g-1时,比电容维持在148 F·g-1,显示了电极具有较好的倍率性能;在10 A·g-1条件下,2 000次循环充放电测试后电容没有发生衰减,展示了在超级电容器方面的应用潜力。  相似文献   

5.
以纳米CaCO3为模板、蔗糖为前躯体制备超级电容器用介孔炭电极材料.材料的结构由氮吸附、TEM表征,借助恒流充放电、循环伏安和交流阻抗评价了其在6 mol.L-1KOH电解液中的电化学电容性能.结果表明,蔗糖基介孔炭的比表面积606 m2/g,富含10~30 nm的介孔.恒流放电法测得介孔炭在电流密度50 mA/g下的比电容为125 F/g,大电流倍率性能特别突出.电流密度增大到20 000 mA/g,比电容还保持有88F/g,远高于进口电容炭,该介孔炭是一种很有前景的高功率超级电容器炭电极材料.  相似文献   

6.
采用恒电流法制备了具有可快速充放电性能的对甲基苯磺酸根(TOS-)掺杂聚吡咯/功能化单壁碳纳米管(PPy-TOS/F-SWNTs)复合材料,扫描电镜(SEM)结果表明该复合材料呈纳米棒状构成的多孔结构,棒径约为70nm;比表面积(BET)测试分析表明该复合材料有着较高的比表面积(12.64m2.g-1)和大的介孔孔隙率(20-40nm).循环伏安(CV)、电化学阻抗谱(EIS)和恒电流充放电(GC)电化学分析表明该材料具有优异的快速充放电性能,在800mV的电位窗和2.5A.g-1(功率密度为2kW.kg-1)的电流密度下该材料具有211F.g-1的比容量(能量密度为18.7Wh.kg-1),而当充放电电流高达80A.g-1(功率密度为60kW.kg-1)时比容量仍可达141.8F.g-1(能量密度为12.6Wh.kg-1),同时该材料还表现出优异的稳定性,在10A.g-1大电流下经历10000圈循环后容量仍保持95.2%.  相似文献   

7.
以甲壳胺(CTS)和钴、铁盐作有机前体与反应物,采用共沉淀法制备了CTS/钴铁层状双金属氢氧化物复合物.样品经过氩气氛、空气氛煅烧,生成氮掺杂部分石墨化碳/钴铁氧化物复合材料(N-PGC/CoFe-TMOs).CTS热解且被过渡金属催化生成部分石墨化碳,同时原位氮掺杂,氮/碳原子比例约为1/18.N-PGC/CoFe-TMOs具有大孔和介孔结构,用作超级电容器电极材料兼有双电层电容与赝电容特征.在2 A·g-1电流密度下,复合物比电容达到671.1 F·g-1,远大于纯钴铁氧化物比电容283.3 F·g-1,复合物具有典型的协同效应.电流密度增加到10 A·g-1时,N-PGC/CoFe-TMOs比电容为573.3 F·g-1,经过5000次充放电循环,复合物比电容保留率为66.4%.制备方法简便、通用,煅烧过程可一步制备氮掺杂的部分石墨化碳并与过渡金属氧化物复合,产物电化学性能优异.  相似文献   

8.
将水溶性壳聚糖碳化得到多孔碳材料, 然后制备了多孔碳/NiO复合材料. 透射电子显微镜(TEM), X射线衍射(XRD)和N2吸-脱附实验等结构表征显示, 材料具有富含介孔的孔道结构. 循环伏安(CV), 恒流充放电等电化学测试表明, 复合材料具有良好的电化学电容性能. 其中Ni/C质量比为2:20时, 复合材料在0.1 A·g-1电流密度下比容量可达355 F·g-1, 而且经过1500次循环比容量仍保持99%左右, 表现出良好的循环稳定性.  相似文献   

9.
超级电容器只有兼具高质量和高体积能量密度才能拥有更广泛的应用价值.本文采用具有纳米结构及高填充密度的RuO_2(纳米球,1.69 g·cm-3)和Co-Ni氧化物(纳米片,2.14 g·cm-3)分别作为负极和正极材料,成功地构筑了氧化物非对称超级电容器.所得不对称超级电容器具有高电压窗口、高质量比容量(217.5 F·g-1)和高体积比容量(412.3 F·cm-3)、高质量能量密度(61.8 Wh·kg-1)和高体积能量密度(121Wh·L-1)的优良性能,在1.4 V的电压下以2 A·g-1的电流密度历经5000次循环后比容量保持率为87%.  相似文献   

10.
聚苯胺/碳纳米纤维复合材料的制备及电容性能   总被引:1,自引:0,他引:1  
采用原位聚合法制备了聚苯胺/碳纳米纤维(PANI/CNF)复合材料,用傅里叶变换红外(FT-IR)光谱、热重分析(TGA)、扫描电镜(SEM)和孔分布及比表面积测定仪研究了复合材料的表面官能团、组成、表面形貌及比表面积,并运用循环伏安(CV)法和计时电位法测试了PANI/CNF布作为电极材料的电化学性能.研究结果表明:PANI/CNF复合材料具有粗糙的毛刺结构,PANI沿碳纳米纤维均匀分布;PANI/CNF电极氧化还原反应的可逆性良好;在100mA·g-1电流密度下,当PANI含量为44.4%(w)时,复合材料比电容量高达587.1F·g-1,比能量为66.1Wh·kg-1,电流密度为800mA·g-1时比功率可达1014.2W·kg-1;在5A·g-1的电流密度下,1000次循环充放电后,复合材料的比电容量衰减28%.PANI/CNF复合材料具有良好的导电性和快速充放电能力,是一种优良的超级电容器电极材料.  相似文献   

11.
高能量密度和功率密度炭电极材料   总被引:2,自引:0,他引:2  
以核桃壳为原料, 采用同步物理-化学活化法制备活性炭(AC). 用氮气吸附法和傅立叶红外光谱(FTIR), 对活性炭的孔结构和表面官能团进行了分析. 以活性炭为电极材料制备炭电极, 6 mol·L-1 KOH溶液为电解液组装成超级电容器, 利用恒电流充放电、循环伏安、交流阻抗等电化学测试方法研究其电化学性能及其与活性炭材料结构的关系. 结果表明, 实验电容器的内电阻、漏电流小, 循环充放电稳定性好, 容量保持率高; 活性炭的比电容随比表面积的增加而增大, 且与BET比表面积呈线性相关; 孔径在1.5-4 nm之间的孔表面有利于形成有效的双电层. 中等比表面积1197 m2·g-1炭样的比电容高达292 F·g-1, 80 mA充放电时, 电容器能量密度高达7.3 Wh·kg-1, 功率密度超过770 W·kg-1,峰值功率密度为5.1 W·g-1.  相似文献   

12.
掺杂离子对聚吡咯膜的电化学容量性能的影响   总被引:1,自引:0,他引:1  
用电化学方法制备了分别以对甲基苯磺酸根(TOS-), 高氯酸根(ClO-4)和氯离子(Cl-)掺杂的聚吡咯(PPy)膜. 用循环伏安(CV)、恒电流充放电和电化学阻抗谱(EIS)等测试了它们的电化学容量性能. 用扫描电镜(SEM)和X射线衍射(XRD)分别研究了这三种PPy膜的形貌和结构. 研究发现, 由于具有疏松多孔的形貌和更有序的分子链结构, PPy-TOS和 PPy-Cl膜具有较好的充放电能力, 在深度充放电时仍具有很小的电化学电阻, 其离子扩散接近理想电容器的离子扩散机理. PPy-Cl(聚合电量2 mAh·cm-2)的比容量在扫描速率为5 mV·s-1时高达270 F·g-1, 扫描速率200 mV·s-1时仍高达175 F·g-1, 特别是, 其比能量高达35.3 mWh·g-1. PPy-TOS由于有质量较大的掺杂离子(TOS-)因而比容量略低(146 F·g-1, 扫描速率5 mV·s-1), 但具有超快速充放电能力, 在扫描速率为200 mV·s-1时, 比容量为123.6 F·g-1, 其比功率高达10 W·g-1. 并且, 两种电极材料均具有稳定的电化学循环性能.  相似文献   

13.
低热固相法制备纳米MnO2/CNT超电容复合电极的循环稳定性   总被引:1,自引:0,他引:1  
为了改善纳米MnO2超级电容器电极的充放电循环稳定性,以Mn(OAc)2·4H2O、NH4HCO3和碳纳米管(CNT)为原料,采用低热固相反应得到前驱体,再经焙烧和酸处理,制备了一系列CNT含量不同的纳米MnO2/CNT复合电极材料,并用X射线衍射(XRD)、透射电镜(TEM)和Brunauer-Emmett-Teller(BET)比表面积测定方法对其进行了表征.XRD分析结果表明,复合材料中的MnO2为纳米γ-MnO2.研究了复合电极在1 mol·L-1 LiOH电解质中的电化学性能,并与不含CNT的纯纳米MnO2电极进行了比较.结果表明,含CNTs为10%(w,质最分数,下同)和20%的MnO2/CNT复合电极的循环稳定性远优于纯纳米MnO2电极的循环稳定性,其中含10%CNTs的MnO2/CNT复合电极不仪具有良好的循环稳定性,而且在1000 mA·g-1高倍率充放电条件下仍具有200 F·g-1的高比电容.  相似文献   

14.
熔盐处理MnO_2及其超级电容性能研究   总被引:1,自引:0,他引:1  
陈野  张尊波  张巍  刘良  刘智敏 《电化学》2008,14(1):46-50
以KCl-NaCl-LiCl熔盐体系处理由固相法制备的MnO2,经XRD、循环伏安、恒流充放电和交流阻抗测试表明,合成的MnO2样品含α-MnO2与γ-MnO2混合晶相,熔盐处理后其结晶程度增加,而且超级电容性能明显提高,放电比容量(129.07 F.g-1)比处理前的(100.94 F.g-1)提高了27.88%.熔盐处理后的样品循环性能良好,充放电效率接近100%,等效串联电阻(RESR)和电极电阻(RE)分别为0.28Ω和0.54Ω.  相似文献   

15.
郭继玺  宋贤丽  郭明晰  贾殿赠  仝凤莲 《化学通报》2016,79(10):942-946,951
采用静电纺丝技术制备了柔性煤基碳纳米纤维(CBCNFs)。利用低温等离子体技术对CBCNFs进行改性,并将改性后的CBCNFs作为还原剂与KMn O4反应,以实现Mn O2的原位还原负载制备CBCNFs/Mn O2复合材料。通过X射线衍射、扫描电镜和透射电镜等手段对复合材料的结构与形貌进行了表征;另外,研究了其作为柔性超级电容器电极材料的性能。结果表明,KMn O4∶CBCNFs=2∶1(质量比)条件下制备的复合材料(CBCNFs/Mn O2-2)具有良好的电化学性能。在0.1A·g-1电流密度下,CBCNFs/Mn O2-2的比电容高达118F·g-1,为CBCNFs比电容(26F·g-1)的4.5倍,在1A·g-1电流密度下,循环1000次后比容量保持率为97%,表现出良好的循环稳定性。  相似文献   

16.
报道了一种基于含锌(II)有机配位聚合物制备微孔碳的新方法. 通过锌离子和酒石酸之间的配位作用获得含锌有机配位化合物, 并通过氢键作用将其引入到间苯二酚/甲醛低聚物溶胶的开放网络结构中. 使含锌有机配位化合物和酚醛低聚物溶胶体系发生共聚反应得到酚醛和含锌有机配位共聚物, 在950℃下热处理分解以及锌蒸气蒸发后制得微孔碳. 微孔碳材料典型样品具有相对较大以及比较规则的微孔, 其比表面积可以达到1260 m2·g-1, 孔体积为0.63 cm3·g-1. 所得微孔碳作为超级电容器电极材料的等效串联电阻为0.46 Ω, 其循环伏安曲线展示出较好的矩形性. 恒流充放电分析结果表明, 当电流密度为1 A·g-1时, 微孔碳电极的比电容为196 F·g-1; 在10 A·g-1的大电流密度下, 比电容仍然达到137 F·g-1. 该电极具有优良的循环稳定性, 1000次循环后比电容保持率达到98%. 这一研究结果表明, 所得微孔碳在超级电容器电极材料方面具有重要的应用前景.  相似文献   

17.
以乙酸锰和钛酸四丁酯为原料,柠檬酸为络合剂,采用溶胶-凝胶法制备钛酸锰(MnTiO3)粉体,而后将其粉体高温氨气氮化,可得到MnO/TiN复合材料. 使用X射线衍射(XRD)、X射线能量色散谱(EDS)和场发射扫描电子显微镜(FESEM)表征材料的物相结构与组分、观察其形貌. 采用循环伏安、恒流充放电和电化学阻抗方法测试电极电化学性能. 结果表明,MnO/TiN电极在100 mA?g-1和1 A?g-1倍率放电下,比容量分别为394 mAh?g-1和146 mAh?g-1,均高于单纯MnO电极比容量和倍率性能,这归因于复合材料中的TiN提供了导电网络,并有效地抑制了电极在充放电过程中的体积膨胀效应.  相似文献   

18.
采用界面聚合法制备聚3,4-乙撑二氧噻吩/二氧化锰(PEDOT/MnO2)纳米复合物. 通过红外(IR)光谱、X射线衍射(XRD)、BET比表面积、扫描电子显微镜(SEM)和透射电子显微镜(TEM)对样品进行表征. 结果表明, 产物是具有丰富的多孔孔道结构的无定型纳米材料, 孔径主要分布在5-25 nm范围内, 比表面积可达98 m2·g-1. 同时用循环伏安(CV)、恒流充放电和交流阻抗(EIS)等电化学测试表明, 在0.5 mol·L-1 Na2SO4溶液中, -0.2 - 0.8 V(vs SCE)的电化学窗口下, PEDOT/MnO2纳米复合物显示出良好的电化学性能, 当电流密度为0.5 A·g-1时, 所制备的PEDOT/MnO2单电极比容量达196.3 F·g-1, 500次循环后样品放电比容量保持90%左右.  相似文献   

19.
有序介孔C/NiO复合材料的合成及其电化学性能   总被引:2,自引:0,他引:2  
以嵌段共聚物F127(Mw=12600, PEO106PPO70PEO106)为模板剂, Ni(Ac)2·4H2O为Ni源, 低分子量的酚醛树酯为碳源, 通过溶胶-凝胶三元共组装方法合成高度有序介孔C/NiO复合材料. 对样品进行X射线衍射(XRD)、透射电子显微镜(TEM)、N2吸脱附等结构表征及循环伏安(CV)等电化学性能测试. 结果显示, NiO晶体和碳组成了C/NiO复合材料的基本骨架, 该复合材料具有高度有序的介孔结构. NiO晶体的存在极大地提高了复合材料的电化学性能, 当C/NiO达到4:1(苯酚与Ni(Ac)2·4H2O的摩尔比)时复合材料的比电容达到444.1 F·g-1, 而有序的介孔结构并没有被破坏, 使得该材料具有较好的应用前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号