首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One of the sulfobetaine methacrylate (SBMA) monomers, N-(3-sulfopropyl)-N-(methacryloxyethyl)-N,N-dimethylammonium betaine, was polymerized onto initiator-covered gold surfaces using atom transfer radical polymerization (ATRP) to form uniform polymer brushes. Self-assembled monolayers (SAMs) with ATRP initiators were characterized by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The thickness of grafted poly(SBMA) films was measured by ellipsometry. Fibrinogen adsorption on poly(SBMA) grafted surfaces was measured with a surface plasmon resonance (SPR) sensor. Two approaches were compared to graft ATRP initiators onto gold surfaces for surface polymerization and subsequent protein adsorption on these polymer grafted surfaces. The first was to prepare a SAM from omega-mercaptoundecyl bromoisobutyrate onto a gold surface. Superlow fouling surfaces with well-controlled poly(SBMA) brushes were achieved using this approach (e.g., fibrinogen adsorption <0.3 ng/cm2). The second approach was to react bromoisobutyryl bromide with a hydroxyl-terminated SAM on a gold surface. Although protein adsorption decreased as the density of surface initiators increased, the surface prepared using the second approach was not able to achieve as low protein adsorption as the first approach. Key parameters to achieve superlow fouling surfaces were studied and discussed.  相似文献   

2.
Interactions between proteins and biomaterial surfaces correlate with many important phenomena in biological systems. Such interactions have been used to develop various artificial biomaterials and applications, in which regulation of non-specific protein adsorption has been achieved with bioinert properties. In this research, we investigated the protein adsorption behavior of polymer brushes of dendrimer self-assembled monolayers (SAMs) with other generations. The surface adsorption properties of proteins with different pI values were examined on gold substrates modified with poly(amidoamine) dendrimer SAMs. The amount of fibrinogen adsorption was greater than that of lysozyme, potentially because of the surface electric charge. However, as the generations increased, protein adsorption decreased regardless of the surface charge, suggesting that protein adsorption was also affected by density of terminal group.  相似文献   

3.
Surface-grafted, environmentally responsive polymers have shown great promise for controlling adsorption and desorption of macromolecules and cells on solid surfaces. In the paper, we demonstrate that certain mixed self-assembled monolayers (SAMs) of oligo(ethylene glycol) (OEG) and methyl-terminated alkanethiolates on gold form surfaces with switchable hydrophobicity and tendency for protein adsorption and cellular attachment. At temperatures above 32 degrees C, SAMs with a surface density of approximately 50% OEG adsorbed significant amounts of pyruvate kinase and lysozyme, whereas below this temperature, these same SAMs were resistant to the adsorption of these proteins. Furthermore, protein layers adsorbed to these SAMs above 32 degrees C were removed upon rinsing with water below this temperature. Similar results were seen for attachment and release of the marine bacterium, Cobetia marina. The change from nonresistance to adsorptive state of the SAMs was concomitant with a change in advancing water contact angle. Vibrational sum frequency generation spectroscopy suggests that the temperature-induced changes coincide with a disorder-to-partial order transition of the hydrated methylene chains of the OEG moieties within the SAMs. Mixed OEG-methyl SAMs represent both a convenient means of controlling macromolecular and cellular adsorption within the laboratory and a useful tool for relating adsorption properties to molecular structures within the SAMs.  相似文献   

4.
The structure and conformation of self-assembled monolayers (SAMs) derived from the adsorption of a specifically designed double-chained partially fluorinated thiol having the formula 12,12,13,13,14,14,15,15,16,16,17,17,18,18,19,19,19-heptadecafluoro -2-tetradecylnona-decane-1-thiol ( 2) onto the surface of evaporated gold were examined by ellipsometry, contact angle goniometry, polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS), and X-ray photoelectron spectroscopy (XPS). The results were compared to those of SAMs generated from normal hexadecanethiol ( 1) and a structurally related single-chained partially fluorinated thiol having the formula 12,12,13,13,14,14,15,15,16,16,17,17,18,18,19,19,19-heptadecafluorononadecane-1-thiol ( 3). Collectively, the studies demonstrate that the double-chained adsorbate 2 forms SAMs on gold in which the alkyl chains are less densely packed and less conformationally ordered than those in the SAMs derived from each of the single-chained adsorbates. Furthermore, the fluorocarbon moieties in the SAMs derived from 2 are more tilted from the surface normal than those in the SAMs derived from 3. The low values of contact angle hysteresis suggest, however, that the double-chained adsorbate 2 generates homogeneous monolayer films on the surface of gold.  相似文献   

5.
Staphylococcus aureus adhesion on self-assembled monolayers (SAMs) formed by the adsorption of alkanethiols on transparent gold films has been studied in real time under well-defined flow conditions using a radial flow chamber and an automated videomicroscopy system. SAMs terminated with methyl, hydroxyl, carboxylic acid and tri(ethylene oxide) groups were investigated. SAMs were characterized using contact angle measurements, ellipsometry and X-ray photoelectron spectroscopy. Adhesion experiments using the Newman strain of S. aureus were performed on bare monolayers and monolayers pre-incubated with fibrinogen. Adhesion was found to be lowest on the ethylene oxide-bearing surfaces, followed by the hydroxyl surfaces. Adhesion on the carboxylic- and methyl-terminated SAMs was much higher. Bacterial adhesion was higher on the hydrophobic surfaces. Pre-incubation of surfaces with fibrinogen minimized the effect of the surface properties of the substrate. Adhesion was increased on all surfaces when fibrinogen was present and no significant differences were observed between adhesion to the different SAMs. This study showed that surfaces rich in ethylene oxide groups can be effectively used to prevent bacterial adhesion. However, under physiological conditions, most of the substrate properties are masked by the presence of the adsorbed protein layer and the effect of substrate properties on bacteria adhesion under flow is minimal.  相似文献   

6.
The adsorption of n-alkanethiols onto polycrystalline thin films of palladium containing a strong (111) texture produces well-organized, self-assembled monolayers. The organization of the alkane chains in the monolayer and the nature of the bonding between the palladium and the thiol were studied by contact angle measurements, optical ellipsometry, reflection absorption infrared spectroscopy (RAIRS), and X-ray photoelectron spectroscopy (XPS). The XPS data reveals that a compound palladium-sulfide interphase is present at the surface of the palladium film. The RAIR spectra, ellipsometry data, and wetting properties show that the palladium-sulfide phase is terminated with an organized, methyl-terminated monolayer of alkanethiolates. The local molecular environment of the alkane chains transitions from a conformationally disordered, liquidlike state to a mostly all-trans, crystalline-like structure with increasing chain length (n = 8-26). The intensities and dichroism of the methylene and methyl stretching modes support a model for the average orientation of an ensemble of all-trans-conformer chains with a tilt angle of approximately 14-18 degrees with respect to the surface normal and a twist angle of the CCC plane relative to the tilt plane of approximately 45 degrees. The SAMs are stable in air, although the sulfur present at the surface oxidizes in air over a period of 2-5 days at room temperature. The differences in chain organization between SAMs formed by microcontact printing and by solution deposition are also examined by RAIRS and XPS.  相似文献   

7.
A study of protein resistance of oligo(ethylene glycol) (OEG), HS(CH2)11(OCH2CH2)nOH (n = 2, 4, and 6), self-assembled monolayers (SAMs) on Au(111) surfaces is presented here. Hydroxyl-terminated OEG-SAMs are chosen to avoid the hydrophobic effect observed with methyl-terminated OEG-SAMs, particularly at high packing densities. The structure of the OEG-SAM surfaces is controlled by adjusting the assembly solvent. These SAMs were characterized by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Protein adsorption on these surfaces was investigated by surface plasmon resonance (SPR). OEG-SAMs assembled from mixed ethanol and water solutions show higher packing density on gold than those from pure ethanol solution. For EG2OH- and EG4OH-SAMs, proteins (i.e., fibrinogen and lysozyme) adsorb more on the densely packed SAMs prepared from mixed ethanol and water solutions, while EG6OH-SAMs generally resist protein adsorption regardless of the assembly solvent used.  相似文献   

8.
The coadsorption of alkanethiols on noble metals has been recognized for a long time as a suitable means of affording surfaces with systematically varied wettability and other properties. In this article, we report on a comparative study of the composition of the mixed self-assembled monolayers (SAMs) obtained (i) by the coadsorption of octadecanethiol (ODT) and 16-mercaptohexadecanoic acid (MHDA) from ethanol and chloroform onto gold substrates and (ii) by microcontact printing using poly(dimethyl siloxane) (PDMS) stamps. SAMs prepared by coadsorption from solution showed a preferential adsorption of ODT for both solvents, but this trend was reversed in microcontact-printed SAMs when using chloroform as a solvent, as evidenced by contact angle and Fourier transform infrared (FTIR) spectroscopy measurements. An approximately linear relationship between the static contact angle and the degree of swelling with different solvents was observed, which suggests that the surface composition can be controlled by the interaction of the solvent and the PDMS elastomer. The altered preference is attributed to the different partitioning of the two thiols into solvent-swelled PDMS, as shown by (1)H NMR spectroscopy. Finally, molecularly mixed binary SAMs on ODT and MHDA on template-stripped gold were applied to study the effect of surface nanobubbles on wettability by atomic force microscopy (AFM). With a decreasing macroscopic contact angle measured through water, the nanoscopic contact angle was found to decrease as well.  相似文献   

9.
Synthesis of beta-D-Gal-(1 --> 3)-beta-D-GalNAc coupled to HOC2H4NHCOC15H30SH is described. This compound was coadsorbed at various proportions with C2H5OC2H4NHCOC15H30SH to form statistically mixed self-assembled monolayers (SAMs) on gold in an attempt to mimic the properties of the active domain in antifreeze glycoproteins (AFGPs). The monolayers were characterized by null ellipsometry, contact angle goniometry, X-ray photoelectron spectroscopy, and infrared reflection-absorption spectroscopy. The disaccharide compound adsorbed preferentially, and SAMs prepared at a solution molar ratio >0.3 displayed total wetting. The mixed SAMs showed well-organized alkyl chains up to a disaccharide surface fraction of 0.8. The amount of gauche conformers in the alkyls increased rapidly above this point, and the monolayers became disordered and less densely packed. Furthermore, the generated mixed SAMs were subjected to water vapor at constant relative humidity and the subsequent ice crystallization on a cooled substrate was monitored via an optical microscope. Interestingly, rapid crystallization occurred within a narrow range of temperatures on mixed SAMs with a high disaccharide content, surface fraction >0.3. The reported crystallization temperatures and the ice layer topography were compared with results obtained for a much simpler reference system composed of -OH/-CH3 terminated n-alkanethiols in order to account for changes in topography of the water/ice layer with surface energy. Although preliminary, the obtained results can be useful in the search for the molecular mechanism behind the antifreeze activity of AFGPs.  相似文献   

10.
Protein-resistant films derived from the fifth-generation poly(amidoamine) dendrimers (PAMAM G5) functionalized with oligo(ethylene glycol) (OEG) derivatives consisting of various ethylene glycol units (EG(n), n = 3, 4, and 6) were prepared on the self-assembled monolayers (SAMs) of 11-mercaptoundecanoic acid (MUA) on gold substrates. The resulting films were characterized by ellipsometry, contact angle goniometry, and X-ray photoelectron spectroscopy (XPS). About 35% of the peripheral amines of the dendrimers were reacted with N-hydroxysuccinimide-terminated EG(n) derivatives (NHS-EG(n)). The dendrimer films showed improved stability over octadecanethiolate SAMs on gold in hot solvents, attributed to the formation of multiple amide bonds per PAMAM unit with underlying NHS-activated MUA monolayer. The EG(n)-attached PAMAM surfaces with n = 3 reduced the adsorption of fibrinogen to approximately 20% monolayer, whereas 2-3% for n = 4 or 6. The dendrimer films with various densities of EG(n) molecules on PAMAM surfaces were prepared by immersion of the NHS-terminated MUA-functionalized gold substrates in ethanolic solutions containing PAMAM and NHS-EG(n) of various mole ratios. The density (r) of the EG(n) molecules on the PAMAM surfaces is consistent with the mole ratio (r') of NHS-EG(n)/free amine of PAMAM in solutions. The resistance to protein adsorption of the resulting surfaces is correlated with the surface density and the length of the EG chains. At their respective r, the EG(n)-modified dendrimer films resisted approximately 95% adsorption of fibrinogen on gold surfaces. Finally, the specific binding of avidin to the approximately 5% and approximately 40% biotinylated EG3 dendrimers (surface density of biotin with respect to the total number of terminal amino groups on PAMAM G5) gave rise to about 50% and 100% surface coverage by avidin, respectively.  相似文献   

11.
Diblock copolymers containing recognition units designed to participate in specific three-point hydrogen bonding were adsorbed onto modified gold surfaces. Self-assembled monolayers (SAMs) containing complementary recognition units were used to direct the adsorption process. The polymer-modified surfaces obtained were characterized using X-ray photoelectron spectroscopy, water contact angle, and ellipsometry. The role of individual block lengths on the adsorption process was followed by observing frequency changes of thymine-SAM-modified quartz crystal microbalance chips during adsorption of diamidopyridine-functionalized polymers from a nonpolar solvent. The renewable nature of these recognition unit functionalized surfaces was demonstrated by reversible binding of polymers. Adsorption onto fresh surfaces, followed by desorption and subsequent readsorption of monoblock and diblock copolymers was also investigated.  相似文献   

12.
We report the formation and characterization of self-assembled monolayers (SAMs) derived from the adsorption of 4-mercaptophenylboronic acid (MPBA) on gold. For comparison, SAMs derived from the adsorption of thiophenol (TP), 4-mercaptophenol (MP), and 4-mercaptobenzoic acid (MBA) were also examined. The structure and properties of the SAMs were evaluated by ellipsometry, contact-angle goniometry, polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS), and X-ray photoelectron spectroscopy (XPS). Specifically, ellipsometry was used to assess the formation of monolayer films, and contact angle measurements were used to determine the surface hydrophilicity and homogeneity. Separately, PM-IRRAS was used to evaluate the molecular composition and orientation as well as the intermolecular hydrogen bonding within the SAMs. Finally, XPS was used to evaluate the film composition and surface coverage (i.e., packing density), which was observed to increase in the following order: TP < MP < MPBA < MBA. A rationalization for the observed packing differences is presented. The XPS data indicate further that ultrahigh vacuum conditions induce the partial dehydration of MPBA SAMs with the concomitant formation of surface boronic anhydride species. Overall, the analytical data collectively show that the MPBA moieties in the SAMs exist in the acid form rather than the anhydride form under ambient laboratory conditions. Furthermore, stability studies find that MPBA SAMs are surprisingly labile in basic solution, where the terminal B-C bonds are cleaved by the attack of hydroxide ion and strongly basic amine nucleophiles. The unanticipated lability observed here should be considered by those wishing to use MPBA moieties in carbohydrate-sensing applications.  相似文献   

13.
Asymmetrically functionalized, four‐armed, Tween 20 derivatives that formed stable monomolecular films on solid substrates were designed and synthesized. Thiol‐modified Tween 20 was used for forming self‐assembled monolayers (SAMs) on gold, and maleimide‐modified Tween 20 was introduced onto SiO2 surfaces with SAMs of (3‐mercaptopropyl)trimethoxysilane through Michael addition. These structurally modified Tween 20 compounds gave the original characteristics of Tween 20, non‐biofouling (from ethylene glycol groups) and functionalizable (from OH groups) properties, to each substrate. The non‐biofouling properties of the Tween 20‐coated gold and SiO2 surfaces were investigated by surface plasmon resonance spectroscopy and ellipsometry, and these surfaces showed strong resistance against nonspecific adsorption of proteins. In addition, the biospecific binding of streptavidin was achieved after coupling of (+)‐biotinyl‐3,6,9‐trioxaundecanediamine onto the non‐biofouling surfaces through amide‐bond formation.  相似文献   

14.
We describe the synthesis of a series of mono-, di-, and trisaccharide-functionalized alkanethiols as well as the formation of fouling-resistant self-assembled monolayers (SAMs) from these. The SAMs were characterized using ellipsometry, wetting measurements, and infrared reflection-absorption spectroscopy (IRAS). We show that the structure of the carbohydrate moiety affects the packing density and that this also alters the alkane chain organization. Upon increasing the size of the sugar moieties (from mono- to di- and trisaccharides), the structural qualities of the monolayers deteriorated with increasing disorder, and for the trisaccharide, slow reorganization dynamics in response to changes in the environmental polarity were observed. The antifouling properties of these SAMs were investigated through protein adsorption experiments from buffer solutions as well as settlement (attachment) tests using two common marine fouling species, zoospores of the green macroalga Ulva linza and cypris larvae of the barnacle Balanus amphitrite. The SAMs showed overall good resistance to fouling by both the proteins and the tested marine organisms. To improve the packing density of the SAMs with bulky headgroups, we employed mixed SAMs where the saccharide-thiols are diluted with a filler molecule having a small 2-hydroxyethyl headgroup. This method also provides a means by which the steric availability of sugar moieties can be varied, which is of interest for specific interaction studies with surface-bound sugars. The results of the surface dilution study and the low nonspecific adsorption onto the SAMs both indicate the feasibility of this approach.  相似文献   

15.
The surface stress induced during the formation of alkanethiol self-assembled monolayers (SAMs) on gold from the vapor phase was measured using a micromechanical cantilever-based chemical sensor. Simultaneous in situ thickness measurements were carried out using ellipsometry. Ex situ scanning tunneling microscopy was performed in air to ascertain the final monolayer structure. The evolution of the surface stress induced during coverage-dependent structural phase transitions reveals features not apparent in average ellipsometric thickness measurements. These results show that both the kinetics of SAM formation and the resulting SAM structure are strongly influenced both by the surface structure of the underlying gold substrate and by the impingement rate of the alkanethiol onto the gold surface. In particular, the adsorption onto gold surfaces having large, flat grains produces high-quality self-assembled monolayers. An induced compressive surface stress of 15.9 +/- 0.6 N/m results when a c(4x2) dodecanethiol SAM forms on gold. However, the SAMs formed on small-grained gold are incomplete and an induced surface stress of only 0.51 +/- 0.02 N/m results. The progression to a fully formed SAM whose alkyl chains adopt a vertical (standing-up) orientation is clearly inhibited in the case of a small-grained gold substrate and is promoted in the case of a large-grained gold substrate.  相似文献   

16.
An immunosensor interface based on mixed hydrophobic self-assembled monolayers (SAMs) of methyl and carboxylic acid terminated thiols with covalently attached human Immunoglobulin G (hIgG), is investigated. The densely packed and organised SAMs were characterised by contact angle measurements and cyclic voltammetry. The effect of the non-ionic surfactant, Tween 20, in preventing nonspecific adsorption is addressed by ellipsometry during physical and covalent hIgG immobilization on pure and mixed SAMs, respectively. It is clearly demonstrated that nonspecific adsorption due to hydrophobic interactions of hIgG on methyl ended groups is totally inhibited, whereas electrostatic/hydrogen bonding interactions with the exposed carboxylic groups prevail in the presence of surfactant. Results of ellipsometry and Atomic Force Microscopy, reveal that the surface concentration of covalently immobilized hIgG is determined by the ratio of COOH / CH(3)-terminated thiols in SAM forming solution. Moreover, the ellipsometric data demonstrates that the ratio of bound anti-hIgG / hIgG depends on the density of hIgG on the surface and that the highest ratio is close to three. We also report the selectivity and high sensitivity achieved by chronoamperometry in the detection of adsorbed hIgG and the reaction with its antibody.  相似文献   

17.
The development of bioelectronic enzyme applications requires the immobilization of active proteins onto solid or colloidal substrates such as gold. Coverage of the gold surface with alkanethiol self-assembled monolayers (SAMs) reduces nonspecific adsorption of proteins and also allows the incorporation onto the surface of ligands with affinity for complementary binding sites on native proteins. We present in this work a strategy for the covalent immobilization of glycosylated proteins previously adsorbed through weak, reversible interactions, on tailored SAMs. Boronic acids, which form cyclic esters with saccharides, are incorporated into SAMs to weakly adsorb the glycoprotein onto the electrode surface through their carbohydrate moiety. To prevent protein release from the electrode surface, we combine the affinity motif of boronates with the reactivity of epoxy groups to covalently link the protein to heterofunctional boronate-epoxy SAMs. The principle underlying our strategy is the increased immobilization rate achieved by the weak interaction-induced proximity effect between slow reacting oxyrane groups in the SAM and nucleophilic residues from adsorbed proteins, which allows the formation of very stable covalent bonds. This approach is exemplified by the use of phenylboronates-oxyrane mixed monolayers as a reactive support and redox-enzyme horseradish peroxidase as glycoprotein for the preparation of peroxidase electrodes. Quartz crystal microbalance, atomic force microscopy, and electrochemical measurements are used to characterize these enzymatic electrodes. These epoxy-boronate functional monolayers are versatile, stable interfaces, ready to incorporate glycoproteins by incubation under mild conditions.  相似文献   

18.
The structural and interfacial properties of self-assembled monolayers (SAMs) on gold derived from the adsorption of a series of 1,1,1-tris(mercaptomethyl)alkanes (i.e., CH3(CH2)mC[CH2SH]3, where m = 9, 11, 13, 15) were investigated. The new SAMs, which possess uniformly low densities of alkyl chains, were characterized by ellipsometry, contact angle goniometry, and polarization modulation infrared reflection absorption spectroscopy. Additional analysis of the SAMs by X-ray photoelectron spectroscopy permitted a direct calculation of the packing densities of the SAMs on gold. The results as a whole, when compared to those obtained on SAMs generated from normal alkanethiols (CH3(CH2)m+2SH), 2-alkylpropane-1,3-dithiols (CH3(CH2)mCH[CH2SH]2), and 2-alkyl-2-methylpropane-1,3-dithiols (CH3(CH2)mC(CH3)[CH2SH]2) having analogous chain lengths, demonstrate that the 1,1,1-tris(mercaptomethyl)alkanes afford SAMs with alkyl chains having the lowest packing density and least conformational order.  相似文献   

19.
Poly(ethylene glycol) (PEG) self-assembled monolayers (SAMs) are extensively used to modify substrates to prevent nonspecific protein adsorption and to increase hydrophilicity. X-ray photoelectron spectroscopy analysis, complemented by water contact angle measurements, is employed to investigate the formation and stability upon aging and heating of PEG monolayers formed on gold and silicon nitride substrates. In particular, thiolated PEG monolayers on gold, with and without the addition of an undecylic spacer chain, and PEG monolayers formed with oxysilane precursors on silicon nitride have been probed. It is found that PEG-thiol SAMs are degraded after less than two weeks of exposure to air and when heated at temperatures as low as 120 degrees C. On the contrary, PEG-silane SAMs are stable for more than two weeks, and fewer molecules are desorbed even after two months of aging, compared to those desorbed in two weeks from the PEG-thiol SAMs. A strongly bound hydration layer is found on PEG-silane SAMs aged for two months. Heating PEG-silane SAMs to temperatures as high as 160 degrees C improves the quality of the monolayer, desorbing weakly bound contaminants. The differences in stability between PEG-thiol SAMs and PEG-silane SAMs are ascribed to the different types of bonding to the surface and to the fact that the thiol-Au bond can be easily oxidized, thus causing desorption of PEG molecules from the surface.  相似文献   

20.
Monolayers from the newly synthesized compound methoxy-tri(ethylene glycol)-undecenyldimethylchlorosilane (CH3O(CH2CH2O)3(CH2)11Si(CH3)2Cl, MeO(EG)3C11DMS) and dodecyldimethylchlorosilane (DDMS), both pure and mixed, were prepared by self-assembly from organic solution in the presence of an organic base. The films obtained were characterized by advancing and receding contact angle measurements and ellipsometry to confirm the formation of self-assembled monolayers (SAMs). The resulting data on the covalently attached dimethylsilanes were compared to known oligo(ethylene glycol) (OEG)-terminated SAM systems based on terminal alkenes, thiolates or trihydrolyzable silanes. The composition of the mixed SAMs was found to depend directly and linearly on the composition of the silanization solution. Enhanced protein repellent properties were found for the SAMs using a variety of proteins, including the Ras Binding Domain (RBD), a protein with high relevance for cancer diagnostics. Roughly a RBD protein monolayer amount was adsorbed to silicon oxide surfaces silanized with DDMS or non-silanized silicon wafers, and in contrast, no RBD was adsorbed to surfaces silanized with MeO(EG)3C11DMS or to mixed monolayers consisting of DDMS and MeO(EG)3C11DMS if the content of OEG-silane overcame a critical content of X(EG) approximately 0.9.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号