首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Reversible protein adsorption and bioadhesion on monolayers terminated with mixtures of oligo(ethylene glycol) and methyl groups
Authors:Balamurugan Subramanian  Ista Linnea K  Yan Juchao  López Gabriel P  Fick Jörg  Himmelhaus Michael  Grunze Michael
Institution:Department of Chemical and Nuclear Engineering, The University of New Mexico, Albuquerque, New Mexico 87131, USA.
Abstract:Surface-grafted, environmentally responsive polymers have shown great promise for controlling adsorption and desorption of macromolecules and cells on solid surfaces. In the paper, we demonstrate that certain mixed self-assembled monolayers (SAMs) of oligo(ethylene glycol) (OEG) and methyl-terminated alkanethiolates on gold form surfaces with switchable hydrophobicity and tendency for protein adsorption and cellular attachment. At temperatures above 32 degrees C, SAMs with a surface density of approximately 50% OEG adsorbed significant amounts of pyruvate kinase and lysozyme, whereas below this temperature, these same SAMs were resistant to the adsorption of these proteins. Furthermore, protein layers adsorbed to these SAMs above 32 degrees C were removed upon rinsing with water below this temperature. Similar results were seen for attachment and release of the marine bacterium, Cobetia marina. The change from nonresistance to adsorptive state of the SAMs was concomitant with a change in advancing water contact angle. Vibrational sum frequency generation spectroscopy suggests that the temperature-induced changes coincide with a disorder-to-partial order transition of the hydrated methylene chains of the OEG moieties within the SAMs. Mixed OEG-methyl SAMs represent both a convenient means of controlling macromolecular and cellular adsorption within the laboratory and a useful tool for relating adsorption properties to molecular structures within the SAMs.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号