首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
以MnOx为活性组分, CeO2为助剂, ZrO2-TiO2为载体制备了MnOx-CeO2/ZrO2-TiO2整体式催化剂,考察了焙烧温度对该催化剂上NH3低温选择性催化还原反应(NH3-SCR)的影响. 通过X射线衍射、比表面积测定、储氧量测定和X射线光电子能谱等手段对催化剂进行了表征. 结果表明,催化剂的织构性能和储氧量对低温NH3-SCR反应有较大的影响,活性组分锰以+3价和+4价共存时具有最好的低温活性. 该催化剂经600 ℃焙烧后,在空速为 36?000 h-1 时,反应有最低的起燃温度160 ℃和很宽的反应温度窗口176~393 ℃(转化率为60%~95%). 该催化剂在固定源,尤其在移动源柴油车上催化净化氮氧化物具有良好的应用前景.  相似文献   

2.
通过共沉淀法制备了SrFe1-xMnxO3钙钛矿催化剂。用XRD、TPR和TG-DSC技术对催化剂进行了物理性能表征,以甲烷催化燃烧为目标反应表征其催化性能,通过BET模型计算了其比表面积,通过阿伦尼乌斯方程计算了反应的表观活化能。结果表明用共沉淀法制备钙钛矿催化剂经700℃焙烧4 h后可以形成完整的钙钛矿晶型,样品都具有高的催化性能,但随着锰离子的掺杂,催化剂活性明显提高,其中SrMnO3催化剂具有较高甲烷催化燃烧活性,起燃温度T10%为435℃,至457℃甲烷完全转化。  相似文献   

3.
Pd基无涂层整体式催化剂上甲苯催化燃烧净化研究   总被引:5,自引:2,他引:3  
采用化学镀法在堇青石蜂窝陶瓷基体上制备了Pd基无涂层整体式催化剂Pd/cord,并对其在甲苯催化燃烧净化反应中的催化性能进行了研究.结果表明,Pd/cord催化剂在钯负载量较低(如为0.24%)时,即可使甲苯从201℃起燃后,突跃到226℃完全转化,表现出良好的甲苯催化燃烧净化性能.该类催化剂在空速6000h-1 ~4...  相似文献   

4.
以甲烷催化燃烧为目标反应,通过共沉淀法、溶胶凝胶法和反相微乳液法制备了Mn掺杂六铝酸盐催化剂,用XRD和TG-DTA技术对催化剂进行了物理性能表征,通过BET模型计算了其比表面积。结果说明3种方法所制备催化剂经1 200℃焙烧4h后均可以形成完整的六铝酸盐晶型,同时都具有高的催化性能和高温稳定性,其中反相微乳液法制备的K2MnAl11O19催化剂具有较高的比表面积和甲烷催化燃烧活性,起燃温度T10%为458℃,至676℃甲烷完全转化。  相似文献   

5.
制备了以La-Al2O3和La-Al2O3+CeO2-ZrO2-MnOx为载体的天然气汽车尾气净化Pd催化剂. 结果表明, 与Pd/La-Al2O3相比, Pd/Al2O3+CeO2-ZrO2-MnOx催化剂能极大地降低CH4的起燃温度并显著改善催化剂的反应性能. 经1000 ℃水热老化后, CH4的起燃温度仅上升了40 ℃, 表现出优异的抗老化性能.  相似文献   

6.
采用溶胶-凝胶法制备了钙钛矿型催化剂La_(0.2)Ce_(0.8)Fe_xMn_(1-x)O_3(x=0.1,0.3,0.5,0.7,0.9),其结构和性能经SEM,XRD,BET和H_2-TPR表征。以甲烷燃烧为目标反应,研究了催化剂的性能。结果表明:单钙钛矿晶型催化剂La_(0.2)Ce_(0.8)Fe_(0.7)Mn_(0.3)O_3的比表面积为10.9 m~2·g~(-1),催化性能最好,起燃温度T10%为420℃,完全转化温度T90%为649℃。  相似文献   

7.
赵波  梁华定  韩文锋  刘化章 《化学通报》2006,69(11):853-856
用氨合成催化剂性能评价装置,研究了反应温度、压力、空速和氢氮比对以活性炭为载体的钌基氨合成催化剂活性的影响。研究表明,低于400℃时,随着反应温度降低,催化剂的活性急剧降低。随着压力升高,催化剂活性增大。但钌催化剂具有较高的低压活性,适宜低压合成氨。随着空速的降低,催化剂的活性明显提高。在空速和压力一定的条件下,最佳氢氮比随反应温度而异,并且当空速较高或反应温度较低时,氢氮比的变化对催化剂活性的影响更加明显。  相似文献   

8.
以壬基酚装置精馏塔釜底液为原料,以磺酸型聚苯乙烯阳离子交换树脂为催化剂,采用常压固定床连续工艺,开展二壬基酚与苯酚的烷基转移反应研究制取壬基酚。分别采用红外光谱、差热热重分析、催化剂颗粒强度测试等表征方法对催化剂的组成、热稳定性及力学性能进行研究。考察了反应温度、原料配比、质量空速和反应时间等因素对催化性能的影响。结果表明,所制备的树脂具有良好的热稳定性和耐压强度,适用于180℃以下的固定床连续反应工艺。在反应温度为160℃、原料质量空速为1h~(-1)、苯酚与二壬基酚质量比为3:1的条件下,二壬基酚转化率达85.9%~90.6%,壬基酚收率达56.8%~67.2%,催化剂稳定性好,连续反应200h催化性能仍保持稳定。  相似文献   

9.
采用柠檬酸(CA)溶胶-凝胶法制备了不同Mn:(Ce+Mn)摩尔比的CeO2-MnOx催化剂,以氯乙烯有机废气的催化燃烧为模型反应,考察了催化剂制备条件和反应条件对于CeO2-MnOx催化剂性能的影响,并用N2吸附、X射线衍射(XRD)和H2程序升温还原(H2-TPR)对催化剂进行了表征.结果表明,CeO2-MnOx催化剂上氯乙烯燃烧反应产物只有HCl,H2O和CO2,没有检测到其他氯代烃和氯气等副产物.当CA:Mn:Ce=0.3:0.50:0.50时,所制备的CeO2-MnOx催化剂活性最高,对于较宽的空速范围(10000~30000h-1)和较宽的浓度范围(0.05%~0.15%),低浓度氯乙烯的催化燃烧反应具有较好的操作弹性.其中当氯乙烯浓度为0.1%,空速为15000h-1时,起燃温度T50=110oC,完全转化温度T99=220oC.XRD和H2-TPR结果表明,在CeO2-MnOx催化剂中只出现立方相萤石结构CeO2的特征衍射峰,没有出现MnOx物种的特征衍射峰;Mn离子进入CeO2晶格形成的Ce-Mn-O固溶体,有利于提高催化剂表面的活性氧物种的活性,乃至催化剂活性.  相似文献   

10.
采用沉淀法或醇凝胶法、浸渍法制备Cu/ZrO2催化剂,在常压微型固定床石英管反应器上进行乙醇水蒸气重整反应,采用程序升温还原(TPR)技术表征催化剂的还原特性。考察了催化剂还原温度、反应温度、水醇比、空速等对反应的影响以及催化剂的稳定性。结果表明,在300℃~500℃,随反应温度升高,乙醇转化率增大,H2选择性下降。不同还原温度对转化率的影响不是很大,对于H2选择性,300℃、400℃还原的催化剂优于500℃还原的催化剂。高水醇比有利于提高转化率和H2选择性。随空速增大,转化率和H2选择性呈现下降的趋势。8%Cu/ZrO2催化剂在400℃或450℃反应22h显示出良好的稳定性。  相似文献   

11.
杨建 《分子催化》2011,25(2):114-118
制备了一系列Co掺杂的CeO2-ZrO2固溶体催化剂,考察了其用于甲烷催化燃烧的反应性能.同时,对反应气体总空速、制备方法和焙烧温度等条件对催化剂反应性能的影响进行了研究.并对其进行了BET比表面、XRD等表征分析.结果表明:Ce-Zr-Co-O系列催化剂对于甲烷催化燃烧反应具有良好的活性和稳定性,Co的加入能显著提升...  相似文献   

12.
李建光  黄妍 《分子催化》2012,26(1):52-61
采用等体积浸渍法制备了CeO2/HBEA催化剂,用于NH3选择性催化还原NO.考察了CeO2负载量、焙烧温度、氧浓度、空速、以及SO2和水蒸气等因素对催化剂活性的影响,并运用BET、X射线衍射(XRD)、扫描电镜(SEM)、热重分析(TGA)、傅里叶红外(FTIR)等手段对该催化剂进行表征,研究了催化剂的晶相、微观形貌与抗毒机制.结果显示:CeO2/HBEA催化剂具有良好的脱硝活性,高活性温度窗口在220~400℃,当反应温度为220℃、空速为12 000 h-1时,NO的转化率达96.49%.H2O的存在对催化剂的脱硝活性无明显影响.SO2一定程度抑制该催化剂的低温脱硝活性,但随着温度的升高,其脱硝活性得到一定恢复.所制备的CeO2/HBEA催化剂有良好的低温活性,能适应较高的空速,且具有较强的抗硫性和抗水中毒性能,有一定的应用前景.  相似文献   

13.
采用浸渍法制备了一系列不同N i含量的N iO/La2O3催化剂,并利用XRD、BET对催化剂结构进行了表征,采用常压下固定床石英管反应器考察了催化剂对甲烷部分氧化制合成气的反应性能和催化剂的稳定性,其甲烷转化率与反应温度、N i含量以及空速有关.结果表明,N i含量为30%的N iO/La2O3催化剂具有良好的催化活性,800℃时甲烷的转化率为88%,CO选择性可达83%,100 h的连续测试显示N iO/La2O3具有良好的稳定性.  相似文献   

14.
钴铝复合氧化物同时催化去除碳烟和氮氧化物   总被引:1,自引:0,他引:1  
以稳态共沉淀法合成的含Co类水滑石为前驱物, 制备了具有介孔结构的复合氧化物催化剂(CAO), 采用程序升温反应技术评价了催化剂同时去除碳烟和氮氧化物的性能, 并用ICP, BET, SEM和XPS等手段分析了材料结构和催化性能的关联. 结果表明, 催化剂呈现钴尖晶石相, 材料表面除了存在与金属键合的晶格氧外, 还有大量的吸附氧. Co/Al摩尔比和焙烧温度影响催化剂的活性, 当Co/Al摩尔比为4和焙烧温度为800 ℃时制备的4CAO-800是一种综合性能良好的催化剂, 具有较低的起燃温度(ti=290 ℃), 生成N2的选择性较高(SN2/C=3.5%). 在同时去除碳烟和NOx反应中, 碳烟的催化燃烧过程可能存在溢流机理和氧化还原机理协同作用.  相似文献   

15.
通过对Cu/HZSM-5分子筛上乙醇的无氧芳构化反应主要产物的在线定量分析,评价了催化剂组成、反应温度、气体空速对芳构化活性的影响。结果表明:Cu/HZSM-5分子筛具有良好的芳构化性能。当金属Cu含量为5%,催化温度为300℃,乙醇气体空速为167h-1时,催化剂具有最好的芳构化效果,乙醇的转化率为35.41%,苯的选择性达到了27.59%。对不同催化温度下反应产物中乙烯生成量的变化情况的研究,证实了乙烯是此催化反应过程的一种最初产物。  相似文献   

16.
采用溶液燃烧法和盐助溶液燃烧法制备铜铁矿结构(ABO2)的钴酸锂(Li Co O2)系列催化剂,通过XRD、BET、ICP、XPS、H2-TPR、程序升温反应等手段对其进行了结构表征与性能评价.研究了溶液燃烧法中燃料尿素以及助剂无机盐Na Cl的用量对所制备的催化剂性能影响.实验结果表明,在尿素过量100%时所制备的催化剂结晶程度及催化氧化性能较好,起燃温度达到270℃,N2的转化率达到36.9%.适量助剂Na Cl的引入显著地提高了催化剂比表面积,增加了催化剂表面活性物种,增强了催化剂的氧化还原能力,进而提升催化剂的活性.其中50%质量分数的Na Cl添加量制备的催化剂具有最低的碳烟起燃温度(246℃),但添加Na Cl对NOx的转化率影响不大.  相似文献   

17.
采用溶胶凝胶法制备了催化剂Zn-Sr-SiO2,其结构经SEM、 XRD、 N2吸附/脱附、NH3-TPD和CO2-TPD表征。利用固定床反应器评价了Zn Sr SiO2对甲醇脱氢制备无水甲醛反应的催化性能。研究了焙烧温度,Zn负载量,Zn/Sr摩尔比,载气流量,质量空速等因素对催化性能的影响,以及催化剂的寿命、失活与再生。结果表明:制备催化剂的最佳条件为焙烧温度700 ℃, Zn负载量为15%, Zn/Sr为5/1。反应温度为600 ℃,甲醇的质量空速为4.47 h-1时,甲醇的转化率为25.35%,甲醛的选择性为91.98%。催化剂寿命为33 h。再生后,催化剂的中强碱性位得到了再生。  相似文献   

18.
在低还原温度下程序升温还原法制备了Ni2P/MCM-41催化剂,并采用H2-TPR、TG-DTG、XRD、BET、XPS等手段对制备的催化剂进行了表征,考察了还原温度对活性相Ni2P形成以及催化剂二苯并噻吩HDS性能的影响。结果表明,在210~390℃下还原得到的催化剂活性相为单一的Ni2P相;在390℃下还原得到的催化剂具有最高的二苯并噻吩HDS活性,在反应温度340℃、反应压力3.0 MPa、氢/油体积比500、质量空速(WHSV)2.0 h-1的条件下二苯并噻吩HDS转化率达到99.0%。  相似文献   

19.
采用液相沉淀法制备了Co3O4催化剂,用XRD、IR、TEM、CO滴定等表征技术和连续流动微反装置,考察了焙烧温度对Co3O4催化剂结构和催化性能的影响.结果表明,在研究的温度范围内催化剂均以单一的尖晶石结构存在,具有良好的CO氧化催化活性,经300℃焙烧的催化剂具有高的分散状态,有利于活性氧物种的形成和反应,在空速5000 h-1,CO体积分数0.5%的反应条件下常温可将CO完全转化500 min.焙烧温度高于或低于300℃均引起常温CO氧化性能的下降.通过对催化剂的抗水性试验和失活前后的XPS表征发现,催化剂的活性下降不是由于Co的价态变化引起的,而是由于水蒸气中毒.  相似文献   

20.
制备条件对碳化钼催化剂加氢脱硫性能的影响   总被引:1,自引:1,他引:0  
以MoO3为前驱体,在CH4/H2气氛中程序升温还原碳化反应制备了Mo2C催化剂,用XRD和BET进行了表征. 以二苯并噻吩/环己烷溶液为模型反应物,评价了制备条件对碳化钼催化剂加氢脱硫性能的影响. 结果表明,在还原碳化温度为675 ℃,恒温保持150 min的合成条件下可制得高纯度的a-Mo2C催化剂,该催化剂表现出了较高的加氢脱硫活性,用质量分数为0.6%的二苯并噻吩/环己烷溶液为反应物,反应压力3.0 MPa,反应空速8 h-1,反应温度330 ℃实验条件下的二苯并噻吩加氢脱硫转化率达到了73.29%. 随还原碳化温度的升高和恒温保持时间的延长,制备的碳化钼催化剂的比表面积下降,表面积炭增多,引起其二苯并噻吩加氢脱硫活性的下降. 适当增大制备过程中还原碳化气体空速,有利于还原碳化反应过程中C、 O之间局部规整反应的进行,并对其二苯并噻吩加氢脱硫活性有明显的促进作用. 实验确定的还原碳化气体空速以1.8×104h-1为宜.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号