首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
以介孔SiO2/Fe3O4磁性中空微球作为载体,采用物理吸附法对漆酶进行固定化,考察了时间、温度和pH值对漆酶固定化效果的影响,并对固定漆酶的活性及稳定性进行了研究.结果表明,介孔SiO2/Fe3O4磁性中空微球吸附漆酶分子后,介孔材料的比表面积与孔体积均减小.在3 h时复合微球对漆酶的吸附达到平衡,复合微球中介孔SiO2对漆酶的有效固定量为689 mg/g,大大高于纯介孔材料MCM-41的漆酶固定量(319 mg/g).在pH=3~6的条件下,复合微球中固定漆酶仍保持70%以上的相对酶活.当温度不高于60℃时,固定漆酶的相对酶活仍保持65%以上.固定漆酶的pH稳定性和热稳定性都明显优于游离漆酶,固定漆酶的米氏常数为1.05 mmol/L,与游离漆酶相比,固定漆酶与底物的亲和力有所降低.当2,4-二氯苯酚的浓度为10 mg/L时,固定漆酶对其去除率在6 h时达到81.6%,表现出很好的催化活性.  相似文献   

2.
通过双槽电化学腐蚀法制备大面积(12 mm×58 mm)均匀的多孔硅片,以小鼠免疫球蛋白G(IgG)与兔抗小鼠IgG抗体的相互作用为模型,证明其表面修饰环氧基团后能作为一种基底材料用于蛋白质微阵列芯片的构建。结果表明,兔抗小鼠IgG抗体检测的灵敏度与多孔硅基底制备时所采用的腐蚀电流密度、腐蚀时间、氢氟酸浓度有关。当电流密度为500 mA/cm2,腐蚀时间为450 s,HF浓度为25%时,IgG在多孔硅基底上的固定量最大,IgG芯片对兔抗小鼠IgG抗体的检出限为10μg/L,检测线性范围为0.32~10.0 mg/L。本方法制备的大面积均匀的多孔硅基底能够应用于蛋白质芯片的制作,并具有制备工艺简单,蛋白质固定量大等优点。  相似文献   

3.
乐园  陈建峰  汪文川 《物理化学学报》2004,20(11):1303-1307
用巨正则系综蒙特卡罗(GCMC)模拟方法结合统计积分方程(SIE)计算了SiO2空心微球球壳上的孔径分布(PSD).HRTEM、XRD及氮气吸附等实验测试表明,SiO2空心微球的球壳上有无序的介孔孔道.在模拟中,基于实验数据,将SiO2空心微球模型化为具有一定孔径分布的园柱孔,流体模型化为Lennard-Jones(LJ)球,流体分子和孔壁间的相互作用采用Wang等人[10]最近提出的完全解析的势函数描述.模拟结果显示,用孔径分布拟合的吸附数据和实验吸附等温线吻合良好,说明PSD能够十分有效地表示SiO2空心微球的微孔结构.  相似文献   

4.
SnO_2-SiO_2负载Cu、Ni催化剂的CO_2加氢反应性能   总被引:1,自引:1,他引:0  
采用表面反应改性法制备了SnO2 SiO2 (SnSiO)表面复合物载体 ,用等体积浸渍法制备了SnSiO担载的Cu Ni双金属催化剂。借助BET、XRD、TPR、IR和微反等技术研究了SnSiO及其负载的Ni、Cu双金属催化剂的表面构造、化学吸附及CO2 加氢反应性能。结果表明 :SnSiO是SnO2 单分子层价联于SiO2 表面的复合氧化物 ,仍保持类似SiO2载体的孔结构和比表面 ;SnO2 引入SiO2 表面后可以有效地促进CuO、NiO的还原 ,还原后成为负载在SnSiO载体表面的Cu Ni合金 ;CO2 在负载型Cu Ni合金表面Cu或表面Ni位上发生化学吸附 ,形成线式和剪式吸附态 ;CO2 在催化剂上的加氢反应产物主要是CH3 OH、CH4 、CO和H2 O ,生成CH3 OH的选择性与催化剂组成及反应条件密切相关。Cu Ni催化剂 ,在 0 5MPa ,170℃ ,H2 /CO2 (mol/mol)为 3的条件下 ,CH3 OH的选择性达到 84 6 %。  相似文献   

5.
以内嵌于聚合物呈非紧密接触堆积的SiO2微球阵列为模板,经HF蚀除表层SiO2微球后再经金属物理覆镀,得到81 cm2/片的球凹阵列SERS基底。以苯硫酚为探针,所得阵列的SERS效应显著(EF高达108量级),并且重现性良好(EF的RSD8%);将SiO2与聚合物的体积比(RS-P)在20%-42%范围内改变,基底表面球凹均可保持六边形周期性排布,球凹的排布密度(Γ)在4.65×108个/cm2-6.92×108个/cm2范围内相应改变。  相似文献   

6.
采用水热法合成了巯基纳米二氧化硅(SiO2-SH),并在其表面修饰亚氨基二乙酸基团(-IDA)得到SiO2-SH/IDA微球.该微球从溶液中可吸附更多的Ni 2+形成SiO2-SH/IDA-Ni 2+复合微球.研究结果表明,利用该复合微球可以较好地分离以组氨酸为标签(His-tagged)的融合蛋白.  相似文献   

7.
合成了表面共价结合Ni-氨基三乙酸(Ni-NTA)基团的Fe3O4@ SiO2微球,这种磁性微球可用于分离含有His-tag标签的融合蛋白.微球中心由尺寸约402 nm的Fe3O4微粒组成,赋予了微球极好的磁性分离和离心分离的特性.应用Fe3O4@ SiO2/Ni-NTA磁性微球对含有6×His-tag(6聚组氨酸)标签的蛋白进行了分离纯化,结果表明,10 mg Fe3O4@ SiO2/Ni-NTA微球能够从10mL重组蛋白裂解液中纯化出约1 mg带有6×His-tag标签的融合蛋白.微球的高效分离效果使其能够用于含量较低的带有6×His-tag标签蛋白的分离纯化.  相似文献   

8.
采用溶剂热法,将均苯三甲酸(H3BTC)与硝酸铜进行反应合成了金属-有机骨架(Metal-Organic Frameworks,MOFs)微孔材料Cu-BTC;利用原位合成法,将Cu-BTC负载到介孔/大孔二氧化硅孔道中,获得介孔CuBTC-SiO2材料。通过静态吸附实验,测定了正己烷(n-C6)、环己烷(c-C6)和正癸烷(n-C10)在Cu-BTC及CuBTC-SiO2上的吸附速率曲线,结果表明,将微孔材料Cu-BTC负载在SiO2之后,CuBTC-SiO2中既有微孔又有一定量的介孔,适量的介孔结构可减小其对正己烷的静态饱和吸附量,但增加对环己烷和正癸烷的静态饱和吸附量。实验测得CuBTC-SiO2对c-C6和n-C10都具有更大的静态饱和吸附量。因此CuBTC-SiO2材料可望应用在烷烃的吸附分离上。  相似文献   

9.
不锈钢(AISI 316L)是目前在医药器械中应用最为广泛的商业化材料. 下一代的不锈钢智能材料将特殊功能的生物活性分子(或纳米粒子)修饰在金属表面以模拟组织功能、提高生物/细胞相容性, 这是目前材料科学研究的热点领域之一. 本文研究了具有微纳米多孔表面结构的316L 不锈钢对抗体和生物酶分子的吸附作用,并与这些生物分子在光滑表面以及镀金表面的吸附进行了比较. 研究发现不锈钢可通过简单的电化学腐蚀方法在表面产生微纳米多孔结构. 微纳米孔不锈钢表面可稳定地吸附抗体或辣根过氧化物酶分子, 其吸附量与喷镀金表面相当或更好. 用表面活性剂(10%牛血清白蛋白(BSA)或0.2% Tween-20)洗涤不能除去吸附的蛋白.用5% Tween-20 预处理金属表面, 则可减少一半的抗体吸附量; 但表面活性剂预处理对辣根过氧化物酶的吸附没有影响. 吸附蛋白质后的金属表面湿润度大大增加; 蛋白质修饰的微纳米孔不锈钢表面表现出了很好的亲水性(水接触角小于50°), 指示了很好的生物相容性. 而金属表面的湿润度则主要取决于蛋白质物种, 并与蛋白质的吸附量正相关. 吸附于不锈钢微纳米孔表面的抗体仍保持了良好的生物活性; 用此种方式制备的抗CD34抗体修饰的不锈钢血管支架可以高密度并高选择性地吸附其目标细胞(如KG-1细胞). 本文工作为未来制备新型的无高聚物涂层的不锈钢智能医学生物材料提供了基础.  相似文献   

10.
提出了一种基于胶体金标记的阳极溶出伏安免疫分析方法。免疫反应在聚苯乙烯微孔板中以夹心分析模式进行,通过物理吸附将兔抗人免疫球蛋白G(IgG)抗体固定于微孔板上,与相应抗原IgG发生免疫反应后,再通过夹心模式捕获相应的纳米金标记的羊抗人IgG抗体,然后再与金标羊抗人IgG抗体和金标兔抗羊二抗形成的免疫复合物反应,在微孔板上进一步引入大量的纳米金,将金溶解后,在碳糊电极上用阳极溶出伏安法(ASV)对金离子进行检测,溶出峰电流的大小间接与待分析物IgG的浓度成正比。对免疫分析的一些实验条件进行了优化。阳极溶出峰电流与IgG的对数浓度在1.1~1 143 ng/mL范围内呈良好的线性关系,检出限为1 ng/mL。将该方法应用于人血清中IgG浓度的测定,取得了满意结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号