首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The asymmetric aldol reaction is one of the most powerful synthetic tools for carbon–carbon bond-forming reactions. This method provides a beneficial route to access chiral β-hydroxy carbonyl compounds, which are versatile synthetic motifs found in biologically active natural products and pharmaceutically attractive intermediates. The aim of this review is to provide an overview of the many contributions and recent advances in the field of organocatalytic asymmetric aldol reactions.  相似文献   

2.
《Tetrahedron: Asymmetry》2014,25(12):949-955
Chiral primary amine catalyzed direct asymmetric aldol reactions of ketones with trifluoroacetophenone, afforded trifluoromethylated β-hydroxycarbonyl aldol products bearing a quaternary carbon stereogenic center in high yields (up to 93% yield) and with high to excellent enantioselectivities of up to 99% ee.  相似文献   

3.
Asymmetric aldol reactions of oxazolidinones as chiral auxiliaries have been achieved and attracted significant consideration as one of the most powerful synthetic tools for the carbon–carbon bond-forming reactions. The methodology has been highly successful in the stereoselective construction of a number of natural products, antibiotics, and other medicinally important compounds. The present review is focused on the utility and versatility of oxazolidinones (Evans chiral auxiliaries) in the asymmetric aldol condensations for the total synthesis of natural products and complex targets.  相似文献   

4.
Atsushi Seki 《Tetrahedron》2004,60(23):5001-5011
Cross-linked polymer-bound lithium dialkylamides were employed in crossed aldol reaction of various carbonyl compounds with aldehydes to afford the corresponding β-hydroxycarbonyl compounds. The introduction of spacer chains to the polymer-bound lithium dialkylamide between the base moiety and the polystyrene backbone effectively enhanced yields of the desired aldol adducts. Sometimes better yields were obtained by using the polymer-bound reagent having an appropriate spacer-chain with those obtained using lithium diisopropylamide under homogeneous conditions. Repeated use of these polymeric reagents was demonstrated with no loss of efficiency.  相似文献   

5.
Nanomaterials with their three-dimensional structure and defined size and shape are considered to be suitable candidates for proper alignment with prochiral substrates for unidirectional introduction of reacting species to induce an asymmetric centre. The reusable and suitably aligned nanocrystalline magnesium oxide catalyzed direct asymmetric aldol reaction afforded the chiral β-hydroxy carbonyl compounds in good yields and moderate ee's.  相似文献   

6.
Aldol reaction involving chiral amines as organocatalysts through enamine formation, like class-I aldolases, is one of the thriving areas of general interest and widely applicable asymmetric reactions. There are many natural and synthetic chiral templates known to work as efficient organocatalysts, but using carbohydrate templates for chiral induction in asymmetric aldol reactions is a relatively new area developed in the recent years. This review focuses on carbohydrates alone or their conjugates with previously known chiral moieties as organocatalysts for asymmetric aldol reactions.  相似文献   

7.
The construction of C-C bonds with complete control of the stereochemical course of a reaction is of utmost importance for organic synthesis. The aldol reaction-the simple addition of an enolate donor to a carbonyl acceptor-is one of the most powerful reactions available to the synthetic chemist. In general, control of the relative and absolute configuration of the newly formed stereogenic centers has been achieved through the use of chiral starting materials or chiral auxiliaries. In recent years the search for catalytic methods that efficiently and effectively transfer chirality information has become a major effort in synthetic organic chemistry. Two different approaches have been taken toward the catalytic asymmetric aldol reaction: biocatalysis and catalysis with small molecules. Both approaches have specific advantages and limitations, and as a result are complementary to each other. The important efforts toward both approaches are reviewed in this article.  相似文献   

8.
[Chemical reaction: See text] The asymmetric aldol reaction of a tetra-substituted ketene silyl acetal including an alkylseleno group with aldehydes has been developed by the promotion of Sn(OTf)2 coordinated with a chiral diamine to afford the corresponding aldols having chiral quaternary centers at the alpha-positions. The facile oxidative deselenization of these aldol compounds produces optically active alpha-methylene-beta-hydroxy esters which correspond to adducts prepared by the asymmetric Morita-Baylis-Hillman reaction.  相似文献   

9.
双噁唑啉手性配体已广泛用于不对称Henry反应、环丙烷化反应、Aldol反应、烷基化反应、环加成反应中,并表现出很高的对映选择性和催化活性,成为最有用的手性配体之一。文章综述了近10年来双噁唑啉手性配体及高分子受载手性双噁唑啉在不对称合成中的研究进展。  相似文献   

10.
A series of chiral amino oxazolines were synthesized and screened as organocatalysts for asymmetric intermolecular aldol reactions between acetone and aromatic aldehydes. The reaction works well with a range of aromatic aldehydes showing good to high selectivity. The present new system of the organocatalyst was effective for the asymmetric aldol reaction for a wide range of aromatic aldehydes and isatin to carry out an asymmetric carbon–carbon bond forming reaction with a high enantioselectivity of up to 91%.  相似文献   

11.
The aldol reaction is among the most important methods of forming carbon-carbon bonds. The addition of an enolate to an aldehyde leads to the formation of at least one chiral center. In the case of α-substituted enolates it has to a large extent been possible to control the product stereochemistry, while the aldol reaction of α-unsubstituted chiral enolates was for many years a “problem child” for synthetic chemists because of its insufficient stereoselectivity. Progress in this area has only been made in the last few years using either new chiral auxiliaries or alternatives to the aldol reaction.  相似文献   

12.
This Letter describes synthetic studies on (−)-scabronine A utilizing a new chiral building block successfully prepared via the catalytic asymmetric intramolecular cyclopropanation (IMCP) of an α-diazo-β-keto sulfone. The crucial transformations in this study are the coupling reaction of two fragments between the positions adjacent to a quaternary carbon center, the intramolecular aldol reaction, the C14 hydroxyl-directed hydrogenation, and the ring-expansion reaction to furnish the 5-6-7 tricyclic cyathane skeleton.  相似文献   

13.
《Tetrahedron: Asymmetry》2006,17(14):2108-2119
Protonated pyrrolidine based small organic molecules have been designed and evaluated for the asymmetric direct aldol reaction in water. The designed organocatalysts are multifunctional in nature and exploit the combined effect of hydrogen bonding and hydrophobic interactions for enantioselective catalysis in water. As a result a unique direct asymmetric aldol reaction in water catalyzed by a small organic molecule having an amide linkage has been developed. The developed catalyst affords chiral β-hydroxyketones in good yields (93%) and enantioselectivities (upto 62%) in water.  相似文献   

14.
Control of stereochemistry during aldol addition reactions has attracted considerable interest over the years as the aldol reaction is one of the most fundamental tools for the construction of new carbon-carbon bonds. Several strategies have been implemented whereby eventually any single possible stereoisomeric aldol product can be accessed by choosing the appropriate procedure. With earlier methods, stoichiometric quantities of chiral reagents were required for efficient asymmetric induction, with the auxiliary most often attached covalently to the substrate carbonyl. Lewis acid catalyzed addition reactions of silyl enolates to aldehydes (Mukaiyama reaction) later opened the way for catalytic asymmetric induction. In the last few years, both chiral metal complexes and small chiral organic molecules have been found to catalyse the direct aldol addition of unmodified ketones to aldehydes with relatively high chemical and stereochemical efficiency. These techniques along with the more recent developments in the area are discussed in this tutorial review.  相似文献   

15.
The dominated approaches for asymmetric aldol reactions have primarily focused on the aldol carbon–carbon bond‐forming events. Here we postulate and develop a new catalytic strategy that seeks to modulate the reaction thermodynamics and control the product enantioselectivities via post‐aldol processes. Specifically, an NHC catalyst is used to activate a masked enolate substrate (vinyl carbonate) to promote the aldol reaction in a non‐enantioselective manner. This reversible aldol event is subsequently followed by an enantioselective acylative kinetic resolution that is mediated by the same (chiral) NHC catalyst without introducing any additional substance. This post‐aldol process takes care of the enantioselectivity issues and drives the otherwise reversible aldol reaction toward a complete conversion. The acylated aldol products bearing quaternary/tetrasubstituted carbon stereogenic centers are formed in good yields and high optical purities.  相似文献   

16.
《Tetrahedron: Asymmetry》2014,25(15):1061-1090
Oppolzer’s camphorsultam has attracted much attention as an efficient chiral auxiliary, and is one of the most powerful synthetic tools in asymmetric synthesis. The sultam chiral auxiliary can be applied in a variety of different reactions such as alkylations, allylations, 1,3-dipolar cycloadditions, cyclopropanation, reductions, Diels–Alder, aldol and ene reactions. These applications have been highly successful in the stereoselective construction of a number of important natural products via total synthesis. The present review is focused on the utility and versatility of the sultam in various asymmetric reactions.  相似文献   

17.
The aldol reaction is one of the most important carbon-carbon bond-forming reactions in organic chemistry. Asymmetric direct cross-aldol reaction of two different aldehydes has been regarded as a difficult reaction because of the side reactions such as self-aldol reaction and over reaction. We found that trifluoromethyl-substituted diarylprolinol, α,α-bis[3,5-bis(trifluoromethyl)phenyl]-2-pyrrolidinemethanol ( 1 ), is an effective organocatalyst that promotes several cross-aldol reactions of aldehydes with excellent diastereo- and enantioselectivities. Acetaldehyde can be employed as a suitable nucleophilic aldehyde. Successful electrophilic aldehydes are ethyl glyoxylate, chloroacetaldehyde, dichloroacetaldehyde, chloral, α-alkyl-α-oxo aldehyde, trifluoroacetaldehyde, glyoxal, alkenyl aldehyde, alkynyl aldehyde, and formaldehyde. Some of the aldehydes are commercially available as a polymer solution, an aqueous solution, or in the hydrated form. They can be used directly in the asymmetric aldol reaction as a commercially available form, which is a synthetic advantage. Given that the obtained aldol products possess several functional groups along with a formyl moiety, they are synthetically useful chiral building blocks.  相似文献   

18.
An efficient ligand design strategy towards boosting asymmetric induction was proposed, which simply employed inorganic nanosheets to modify α‐amino acids and has been demonstrated to be effective in vanadium‐catalyzed epoxidation of allylic alcohols. Here, the strategy was first extended to zinc‐catalyzed asymmetric aldol reaction, a versatile bottom‐up route to make complex functional compounds. Zinc, the second‐most abundant transition metal in humans, is an environment‐friendly catalytic center. The strategy was then further proved valid for organocatalyzed metal‐free asymmetric catalysis, that is, α‐amino acid catalyzed asymmetric aldol reaction. Visible improvement of enantioselectivity was experimentally achieved irrespective of whether the nanosheet‐attached α‐amino acids were applied as chiral ligands together with catalytic ZnII centers or as chiral catalysts alone. The layered double hydroxide nanosheet was clearly found by theoretical calculations to boost ee through both steric and H‐bonding effects; this resembles the role of a huge and rigid substituent.  相似文献   

19.
Sorting tags are oligomeric structures that can be used as protecting groups or chiral auxiliaries enabling solution-phase mixture syntheses of multiple tagged compounds in one pot and allowing for facile and predictable chromatographic separation of products at the end of synthetic sequences. Perfluorinated hydrocarbon and oligomeric ethylene glycol (OEG) derivatives are known classes of sorting tags. Herein we describe the preparation of OEGylated chiral oxazolidinones and their use in asymmetric solution-phase mixture aldol reactions. Through the use of such oxazolidinones based on tyrosine four different individually tagged aldol adducts were obtained as a mixture, chromatographically demixed, detagged, and it was shown that these processes gave the desired aldol products in good yield and enantioselectivity.  相似文献   

20.
The synthesis of helically chiral [6]helicene-based sulfonic acid and sulfonamide from enantiomerically pure 1-acetylthio-5,6,9,10-tetrahydro[6]helicene is reported. The first helically chiral disulfonimides were developed as a synthetic application of [6]helicene-based sulfonamide. This new class of organocatalysts was tested in an asymmetric Mukaiyama aldol reaction to obtain up to quantitative yields and enantioselectivities up to 24%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号