首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The extensional rheological properties of low density polyethylene (LDPE)/linear low density polyethylene (LLDPE) blend melts were measured using a melt spinning technique under temperatures ranging from 160 to 200 °C and die extrusion velocities varying from 9 to 36 mm/s. The results showed that the melt elongation stress decreased with a rise of temperature while it increased with increasing extensional strain rate and the LDPE weight fraction. The dependence of the melt elongation viscosity on temperature roughly obeyed the Arrhenius equation, it increased with increasing extensional strain rate and the LDPE weight fraction when the extensional strain rate was lower than 0.5 s−1, and it reached a maximum when the extensional strain rate was about 0.5 s−1, which can be attributed to the stress hardening effect.  相似文献   

2.
By using Instron 1342 testing system and an improved SHPB technique, PP/PA blends are tested at a wide range of strain rates from 10−4 up to 103 s−1 and at a temperature range of 25–80 °C. Their mechanical responses are shown to be sensitive both to the strain rate and temperature. Based on the experimental data of 113 blends at a wide range of strain rates from 10−4 up to 103 s−1 and at a temperature range of 25–80 °C, it is shown that the mechanical behavior of this PP/PA blends can be described with ZWT thermoviscoelastic constitutive equation. The corresponding thermoviscoelastic parameters for 113 blends are obtained. The predicted theoretical results coincide quite well with the experimental data.The experimental results also reveal that the rate/time-temperature equivalence relation is shown for PP/PA blends. Raising the temperature is equivalent to the increasing of time (the decreasing of strain rate). Conversely, decreasing the temperature is equivalent to the decreasing of time (the increasing of strain rate). Through introducing a dimensionless parameter , two characteristic parameters: strain rate and temperature T are put together to this unified parameter Z. From experimental results, A/k is fitted, A/k = 8.595 °C, and a unified curve characterizing the rate/time –temperature equivalence relation is obtained.  相似文献   

3.
The purpose of this work is to characterize the mechanical behavior of blends of polycarbonate (PC) and acrylonitrile-butadiene-styrene (ABS) during monotonic and cyclic loading. Compression experiments were performed using a SHIMADZU universal testing machine (10−4 to 10−2 s−1) and a split Hopkinson pressure bar (1600–5000 s−1), with, the test temperatures ranging from 293 to 353 K. The influence of the rate and temperature on the deformation of PC/ABS is discussed in detail. Based on the investigation of numerous constitutive models, a phenomenological model called DSGZ was chosen to describe the compression behavior of PC/ABS. This model could not accurately reproduce the deformation of polymers at high strain rates when utilizing the same material coefficients for the low and high strain–rate deformations. In addition, this model was unable to capture the deformation features during unloading and subsequent reloading when adopting the original stress–strain updating algorithm. Hence, some improvements to the model have been implemented to better predict the deformation. Finally, the model predictions are shown to be consistent with the experimental results.  相似文献   

4.
The mechanical properties of composite modified double base (CMDB) propellant significantly depend on the strain rate. In particular, the yield stress increases dramatically at higher strain rates. To study this behaviour, low, intermediate and high strain rate compression testing (1.7 × 10−4 to 4 × 103 s−1) of CMDB propellant at room temperature was conducted by using a universal testing machine, a hydraulic testing machine and a split Hopkinson pressure bar (SHPB) system, respectively. The yield stress was observed to increase bilinearly with the logarithm of strain rate, with a sharp increase in slope at a strain rate of 5 × 101 s−1, which was supported by dynamic mechanical analysis (DMA) testing. The Ree-Eyring model, involving two rate-activated processes, was employed to predict the yield behaviour of CMDB propellant over a wide range of strain rates. The predictions are in excellent agreement with the experimental data.  相似文献   

5.
The present study investigates the deformation behavior of Poly-Ether-Ether-Ketone (PEEK) at elevated temperatures and low strain rates through a combination of experiments and simulations. Uniaxial tension tests at elevated temperatures (293–543 K) and strain rates (8.3 × 10−3 to 3.3 × 10−1 s−1) were performed, and the temperature- and rate-dependencies of the deformation behavior and mechanism of PEEK were discussed in detail. The Erichsen test was performed at temperatures varying from 473 to 533 K and a fixed speed of 1 mm/s. Based on an investigation of numerous constitutive models, a phenomenological model called DSGZ was employed in ABAQUS/Explicit to characterize the deformation behavior of PEEK at elevated temperatures, and the deviation between experimental and simulation data was less than 10% at large deformations. Moreover, the simulation results accurately predicted the necking and cold drawing phenomena in the tension test as well as the deformation in the Erichsen test.  相似文献   

6.
The tensile strength of poly(methyl methacrylate) (PMMA), polycarbonate (PC), polychlorotrifluoroethylene, and polysulfone was measured in liquid nitrogen over the strain rate range of 2 × 10?4 to 660 min?1. These polymers deformed by crazing which was induced by the liquid nitrogen. The stress versus log strain rate curve was sigmoidal in that its slope increased and then decreased with strain rate. Above a critical strain rate of about 200 min?1, which varied somewhat with the polymer, crazing was not observed with the optical microscope; the behavior became brittle, and the tensile strength became constant. The nonlinear behavior of stress versus log strain rate at low strain rates was associated with a decrease in activation volume with increasing strain rate whereas the nonlinear behavior at high strain rates was associated with an increase in density and decrease in length of the crazes with strain rate. The strain rate effect was the basis for calculating the diffusion coefficient of nitrogen into the polymers at 77°K. The shear deformation mode of PC was measured under compression and under tension. The compressive strength versus log strain rate was linear throughout the entire range giving a compression shear activation volume of 360 Å3. The shear tensile strength of PC varied only slightly with strain rate when compared to the compressive strength. The brittle fracture stress of PMMA, in the absence of crazing, in compression and in tension, did not vary with strain rate.  相似文献   

7.
The present paper is concerned with the plasticity of a polyvinylidene fluoride (PVDF) in tension. Strain rate strongly influences the plastic behaviour, but the variation of the elastic properties is almost negligible within the range of strain rates considered in the study (from 1.6 × 10−4 s−1 up to 1.6 × 10−1 s−1). In particular, the yield stress and the ultimate tensile strength are strongly rate-dependent. A one-dimensional elasto-viscoplastic phenomenological model is proposed and analysed. Despite the nonlinearity of the model equations, only one tensile test performed with variable strain rate is sufficient to identify all material parameters. Model predictions are compared with experiments showing good agreement.  相似文献   

8.
Rheological properties of vinyl ester-polyester resin suspensions containing various amounts (0.05, 0.1 and 0.3 wt.%) of multi walled carbon nanotubes (MWCNT) with and without amine functional groups (-NH2) were investigated by utilization of oscillatory rheometer with parallel plate geometry. Dispersion of corresponding carbon nanotubes within the resin blend was accomplished employing high shear mixing technique (3-roll milling). Based on the dynamic viscoelastic measurements, it was observed that at 0.3 wt.% of CNT loadings, storage modulus (G′) values of suspensions containing MWCNTs and MWCNT-NH2 exhibited frequency-independent pseudo solid like behavior especially at lower frequencies. Moreover, the loss modulus (G″) values of the resin suspensions with respect to frequency were observed to increase with an increase in contents of CNTs within the resin blend. In addition, steady shear viscosity measurements implied that at each given loading rate, the resin suspensions demonstrated shear thinning behavior regardless of amine functional groups, while the neat resin blend was almost the Newtonian fluid. Furthermore, dynamic mechanical behavior of the nanocomposites achieved by polymerizing the resin blend suspensions with MWCNTs and MWCNT-NH2 was investigated through dynamic mechanical thermal analyzer (DMTA). It was revealed that storage modulus (E′) and the loss modulus (E″) values of the resulting nanocomposites increased with regard to carbon nanotubes incorporated into the resin blend. In addition, at each given loading rate, nanocomposites containing MWCNT-NH2 possessed larger loss and storage modulus values as well as higher glass transition temperatures (Tg) as compared to those with MWCNTs. These findings were attributed to evidences for contribution of amine functional groups to chemical interactions at the interface between CNTs and the resin blend matrix. Transmission electron microscopy (TEM) studies performed on the cured resin samples approved that the dispersion state of carbon nanotubes with and without amine functional groups within the matrix resin blend was adequate. This implies that 3-roll milling process described herein is very appropriate technique for blending of carbon nanotubes with a liquid thermoset resin to manufacture nanocomposites with enhanced final properties.  相似文献   

9.
The effect of strain rate on the behavior of PET during its tensile drawing in highly viscous liquids, such as liquid PEG (M 400) and semidilute solutions of PEO (M = (4 × 104)−(1 × 106)), is studied. With an increase in strain rate, the mechanism of tensile drawing of PET in PEG changes from solvent crazing to shearing; at the same time, over the selected interval of strain rates, tensile drawing of PET in semidilute solutions of PEO proceeds via the mechanism of solvent crazing. During tensile drawing of PET in PEO solutions, the behavior of PET is almost the same as the mechanism of tensile drawing in a pure solvent. This result indicates that, in the course of flow of the polymer solution through the formed porous structure, PEO is filtered off in the local tip region of the growing craze.  相似文献   

10.
The transesterification kinetics of poly(ethylene terephthalate) (PET)/copoly(oxybenzoate-p-terephthalate) (liquid crystalline polymer, LCP) (70/30 by weight) in the presence of small amount of bis(2-oxazoline) (BOZ) as chain extender was studied by using 1H nuclear magnetic resonance. The kinetic data was treated as a second-order reversible reaction, and it was found that the rate constants of transesterification at 270, 280 and 290 °C were 1.55×10−2, 2.20×10−2 and 3.01×10−2 min−1, respectively, the value of which was higher than the blend without addition of BOZ, 1.26×10−2 min−1, and the activation energy of PET/LCP transesterification was 84.4 kJ mol−1.  相似文献   

11.
Summary: The objective of this research was to verify the influence of adding increasing amounts of lauric acid on the functional properties of homogenized films made from gelatin, triacetin and a blend of palmitic and stearic acids. The films were characterised with respect to their visual aspect, water vapour permeability (WVP), water solubility, mechanical properties (tensile strength and percent elongation), oxygen permeability (O2P), opacity (OP) and melting and glass transitions temperatures. The films produced were malleable and macroscopically homogeneous. The addition of 1% of lauric acid to the film of gelatin, triacetin and blend of palmitic and stearic acids (5.84 ± 0.31 gmm · m−2 dkPa) caused a slight decrease in WVP. The additions of 2.5% (5.70 ± 0.76 gmm · m−2 dkPa), 5% (5.38 ± 0.64 gmm · m−2 dkPa) and 10% (4.50 ± 0.55 gmm · m−2 dkPa) of lauric acid were sufficient to make a significant difference in the WVP at the higher levels used. As compared to the gelatin and triacetin film, the addition of lauric acid at all the concentrations studied resulted in a slight increase in the film solubility. The addition of hydrophobic substances to gelatin/triacetin films (15.26 ± 0.28 cm3 · µm · m−2 dkPa) favoured an increase in O2P permeability, this effect being greater in the films made from gelatin, triacetin, blend of palmitic and stearic acids and 10% lauric acid (24.48 ± 0.07 cm3 · µm · m−2 dkPa). The increasing addition of lauric acid significantly reduced the tensile strength and increased elongation of the films composed of gelatin, triacetin and blend that being more evident at the concentrations of 5% (67.58 ± 1.23 MPa and 11.45 ± 0.57%) and 10% (63.50 ± 1.56 MPa and 12.90 ± 0.57%). The addition of 1% (OP, 27%) and 10% (OP, 28%) of lauric acid induced no visible effect on the opacity of the films. The thermogrammes showed three transitions for the gelatin/triacetin/stearic-palmitic blend/1% lauric acid films (−57.42 °C, 23.74 °C and 44.11 °C) and two for the gelatin/triacetin/stearic-palmitic acids blend/10% lauric acid films (−56.22 °C and 17.35 °C). As observed by DSC, the addition of fatty acids resulted in the appearance of more than one melting peak for all films in relation to the gelatin and triacetin film.  相似文献   

12.
As a model of serine hydrolase, the condensation polymers of salicylic acid, formaldehyde and methyl amine, n-propyl amine, n-hexyl amine or n-lauryl amine were prepared by polycondensation catalyzed by sulfuric acid. It was confirmed by potentiometric titration and infrared spectrum that the polymers containing tertiary amino group possess the structure which resembles the internal salt of amino acid in weak basic and weak acidic solution:  相似文献   

13.
《先进技术聚合物》2018,29(8):2287-2299
There is a huge demand especially for polyvinylidene fluoride (PVDF) and its copolymers to provide high performance solid polymer electrolytes for use as an electrolyte in energy supply systems. In this regard, the blending approach was used to prepare PVDF‐based proton exchange membranes and focused on the study of factor affecting the ir proton conductivity behavior. Thus, a series of copolymers consisting of poly (methyl methacrylate) (PMMA), polyacrylonitrile (PAN), and poly(2‐acrylamido‐2‐methyl‐l‐propanesulfonic acid) (PAMPS) as sulfonated segments were synthesized and blended with PVDF matrix in order to create proton transport sites in PVDF matrix. It was found that addition of PMMA‐co‐PAMPS and PAN‐co‐PAMPS copolymers resulted in a significant increase in porosity, which favored the water uptake and proton transport at ambient temperature. Furthermore, crystallinity degree of the PVDF‐based blend membranes was increased by addition of the related copolymers, which is mainly attributed to formation of hydrogen bonding interaction between PVDF matrix and the synthesized copolymers, and led to a slight decrease in proton conductivity behavior of blend membranes. From impedance data, the proton conductivity of the PVDF/PMMA‐co‐PAMPS and PVDF/PAN‐co‐PAMPS blend membranes increases to 10 and 8.4 mS cm−1 by adding only 50% of the related copolymer (at 25°C), respectively. Also, the blend membranes containing 30% sulfonated copolymers showed a power density as high as 34.30 and 30.10 mW cm−2 at peak current density of 140 and 79.45 mA cm−2 for the PVDF/PMMA‐co‐PAMPS and PVDF/PAN‐co‐PAMPS blend membranes, respectively. A reduction in the tensile strength was observed by the addition of amphiphilic copolymer, whereas the elongation at break of all blend membranes was raised.  相似文献   

14.
The recycling of post-consumer plastics and their utilization as raw materials to develop value-added products has become an important goal worldwide. The present work is concerned with the thermo-mechanical analysis of recycled high-density polyethylene (HDPE) under uniaxial tensile loading. The main focus is to propose a one-dimensional phenomenological model able to describe the influence of temperature and strain rate on the mechanical behavior. Tensile tests were performed over a wide range of temperatures (from 25°C to 100°C). Each experiment was performed under controlled strain rate varying from 7.25 × 10−5 s−1 to 7.25 × 10−3 s−1 in steps. It is shown that only one tensile test performed at three different temperatures is necessary to fully identify experimentally all material parameters that arise in the theory. Thus, with this experimental procedure, the number of tests used to evaluate the mechanical properties of recycled HDPE is significantly reduced. The experiments are compared with the model predictions and show good agreement.  相似文献   

15.
Polymer concrete (PC) has superior mechanical properties in comparison with cement concrete. In this research, the mechanical behavior of polyester polymer concrete (PPC) and its polyester resin were studied at different loading rates. Special specimens for testing the PPC and the polyester resin under low strain rate loading conditions were fabricated. Experiments were performed under different strain rates, from 0.00033 to 0.15 s1, and results for the PPC and the polyester resin were compared. Furthermore, the influence of strain rate on the mechanical response of the neat polyester and the PPC was investigated. The results show a maximum 40% increase in tensile strength of the neat polyester, while the elastic modulus does not change significantly. The compressive strength of the PPC increases by 25%. These results show that the mechanical behavior of the polyester resin and its PC is extremely sensitive to the strain rate.  相似文献   

16.
The free retraction of vulcanised strips of natural rubber released from simple uniaxial deformation is studied using high speed cinematography in the context of a simple momentum theory. Good agreement between the theory and experiment is observed when vulcanisates are released from stresses below 1 MPa, which corresponds to tensile strains rates below 1 × 103 s−1. Above this critical stress and corresponding strain rate value, an increasing dispersion is observed in the form of slowing down of the characteristic retraction pulse, and also by a relaxation of strain ahead of the pulse front (a dispersion of the pulse). Holding samples at high strains for an extended period of time prior to releasing results in a further, significant retardation of the retraction pulse velocity. These effects are related to the increasing non-linearity of high strain rate retraction stress–strain behaviour. Energy balance arguments show that the dispersion of the retraction pulse is a prerequisite for pulse propagation, and that its magnitude underpins the deviation from the momentum model outlined in this paper.  相似文献   

17.
Aromatic polyethers containing polar pyridine units in the main chain have been synthesized using different difluoride monomers. Copolymers of 2,5-(4′,4″dihydroxy biphenyl)-pyridine and 3,3′,5,5′-tetramethyl-[1,1′-biphenyl]-4,4′-diol with bis(4-fluorophenyl) sulfone or phenyl phosphine oxide difluoride or decafluorobiphenyl (PTMPySF, PTMPyPO, PTMPyDF) were synthesized. These polymeric structures despite their common structural characteristics, showed totally different behavior in terms of solubility and acid doping ability. Blends of these copolymers have been prepared in order to be evaluated in terms of fuel cell relevant parameters like acid doping ability and conductivity. In most cases flexible membranes were obtained by solution casting. The acid doping ability was controlled based on the blend constituents and composition. The doped membranes exhibited high conductivity values, in the range of 10−3 S/cm at room temperature which is increased at 2.5 × 10−2 S/cm at temperatures up to 180 °C.  相似文献   

18.
The kinetics of the dissipation of chlortetracycline in the aquatic environment was studied over a period of 90 days using microcosm experiments and distilled water controls. The distilled water control experiments, carried out under dark conditions as well as exposed to natural sunlight, exhibited biphasic linear rates of dissipation. The microcosm experiments exhibited triphasic linear rates of degradation both in the water phase (2.7 × 10−2, 7 × 10−3, 1.3 × 10−3 μg g−1 day–1) and the sediment phase (3.4 × 10−2, 6 × 10−3, 1 × 10−3 μg g−1 day–1). The initial slow rate of dissipation in the dark control (3 × 10−3 μg g−1 day–1) was attributed to a combination of evaporation and hydrolysis, whereas the subsequent fast rate (1.8 × 10−3 μg g−1 day1) was attributed to a combination of evaporation, hydrolysis, and microbial degradation. For the sunlight-exposed control, the initial slow rate of dissipation (1.5 × 10−3 μg g−1 day–1) was attributed to a combination of evaporation, hydrolysis, and photolysis, whereas the subsequent fast rate was attributed to a combination of evaporation, hydrolysis, photolysis, and microbial degradation (5.1 × 10−3 μg g−1 day–1). The initial fast rate of dissipation in the water phase of the microcosm experiment is attributed to a combination of evaporation, hydrolysis, photolysis, and microbial degradation, whereas all subsequent slow rates in the water phase and all rates of degradation in the sediment phase are attributed to microbial degradation of the colloidal and sediment particle adsorbed antibiotic. A multiphase zero-order kinetic model is presented that takes into account (a) dissipation of the antibiotic via evaporation, hydrolysis, photolysis, microbial degradation, and adsorption by colloidal and sediment particles and (b) the dependence of the dissipation rate on the concentration of the antibiotic, type and count of microorganisms, and type and concentration of colloidal particles and sediment particle adsorption sites within a given aquatic environment.  相似文献   

19.

Isothermal and dynamic differential scanning calorimetry (DSC) was exploited to study the curing behavior of diglycidyl ether bisphenol-A epoxy resin with various combining ratios of dicyandiamide (DICY) and nadic methyl anhydride (NMA). Curves of prepared samples indicated that the enthalpy of the reaction decreased with increasing the molar ratios (NMA/DICY) up to 40% after which an exothermic peak peculiar to the effect of anhydride appeared at a higher temperature. The curing behavior examination of the samples containing the aforementioned molar ratio of NMA/DICY (= 40%) was carried out using isothermal condition at different temperatures (130–145 °C) and dynamic condition DSC at various heating rates (2.5–20 °C min−1). Under the isothermal condition, by constructing a master curve, the values of activation energy (Ea) and pre-exponential factor (A) were calculated 89.3 kJ mol−1 and 1.2 × 10+9 s−1, respectively. The activation energy of the curing reactions in a dynamic mode was obtained 85.32 kJ mol−1 and 88.02 kJ mol−1 using Kissinger and Ozawa methods, respectively. Likewise, pre-exponential factors were also calculated 3.35 × 10+8 and 7.4 × 10 +8 s−1, respectively. The overall order of reaction for both conditions was found to be a value around 3.

  相似文献   

20.
The kinetics of the transesterification reaction between poly(ethylene terephthalate) (PET) and poly(ethylene 2,6‐naphthalate) (PEN) with and without the addition of a chain extender were studied with 1H NMR. Different kinetic approaches were considered, and a second‐order, reversible reaction was accepted for the PET/PEN reactive blend system. The addition of 2,2′‐bis(1,3‐oxazoline) (BOZ) promoted the transesterification reaction between PET and PEN in the molten state. The activation energy of the transesterification reaction for the PET/PEN reactive blend with BOZ (94.0 kJ/mol) was lower than that without BOZ (168.9KJ/mol). The rate constant k took an almost constant value for blend samples with different compositions mixed at 275 °C. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2607–2614, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号