首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
化学   1篇
  2019年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
The kinetics of the dissipation of chlortetracycline in the aquatic environment was studied over a period of 90 days using microcosm experiments and distilled water controls. The distilled water control experiments, carried out under dark conditions as well as exposed to natural sunlight, exhibited biphasic linear rates of dissipation. The microcosm experiments exhibited triphasic linear rates of degradation both in the water phase (2.7 × 10−2, 7 × 10−3, 1.3 × 10−3 μg g−1 day–1) and the sediment phase (3.4 × 10−2, 6 × 10−3, 1 × 10−3 μg g−1 day–1). The initial slow rate of dissipation in the dark control (3 × 10−3 μg g−1 day–1) was attributed to a combination of evaporation and hydrolysis, whereas the subsequent fast rate (1.8 × 10−3 μg g−1 day1) was attributed to a combination of evaporation, hydrolysis, and microbial degradation. For the sunlight-exposed control, the initial slow rate of dissipation (1.5 × 10−3 μg g−1 day–1) was attributed to a combination of evaporation, hydrolysis, and photolysis, whereas the subsequent fast rate was attributed to a combination of evaporation, hydrolysis, photolysis, and microbial degradation (5.1 × 10−3 μg g−1 day–1). The initial fast rate of dissipation in the water phase of the microcosm experiment is attributed to a combination of evaporation, hydrolysis, photolysis, and microbial degradation, whereas all subsequent slow rates in the water phase and all rates of degradation in the sediment phase are attributed to microbial degradation of the colloidal and sediment particle adsorbed antibiotic. A multiphase zero-order kinetic model is presented that takes into account (a) dissipation of the antibiotic via evaporation, hydrolysis, photolysis, microbial degradation, and adsorption by colloidal and sediment particles and (b) the dependence of the dissipation rate on the concentration of the antibiotic, type and count of microorganisms, and type and concentration of colloidal particles and sediment particle adsorption sites within a given aquatic environment.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号