首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 179 毫秒
1.
利用零维纳米粒子与二维纳米片在聚合物基体中的协同分散,构筑纳米粒子/二维纳米片/聚酰亚胺(PI)三元复合体系,系统研究了零维-二维组合纳米填料对复合材料介电常数、击穿强度、储能密度以及机械性能的影响.结果表明:采用氟碳表面活性剂插层修饰可以将水滑石剥离为水滑石二维纳米片(HT),在此纳米片溶液中分散钛酸钡纳米粒子(BT),并进行聚酰亚胺的原位聚合.在聚合物溶液形成薄膜的过程中,二维纳米片和纳米粒子的协同作用抑制了各自的团聚,改善了2种纳米填料在聚合物薄膜中的分散状况.在所制备的PI/BT/HT复合薄膜中,HT有利于改善BT在PI基体中的均匀分散,提高了薄膜的击穿强度,进而提升了复合薄膜的储能密度.与仅加入20%BT相比,在聚酰亚胺中同时加入2种填料20%BT和1%HT时,击穿强度达到354.4 kV/mm,储能密度达到2.58 J/cm3,分别提高了12.4%和14.6%.因此,在纳米粒子/聚合物复合材料中增加少量二维纳米片就可以显著改善其性能,这种方法有望在更多纳米复合功能材料领域得到应用.  相似文献   

2.
《先进技术聚合物》2018,29(4):1271-1277
Dielectric materials with high breakdown strength and low loss are of crucial importance in capacitive energy storage electronics. Herein, a kind of polymer blend composed of poly(vinylidene fluoride‐trifluoroethylene‐chlorofluoroethylene) ferroelectric terpolymer and linear dielectric poly(methyl methacrylate) (PMMA) is presented. The polymer blend shows a breakdown strength of 733 MV/m and a charge‐discharge efficiency over 90% at 200 MV/m with optimized PMMA content, which are 101% and 28% higher than that of neat terpolymer. Moreover, microsecond discharge time of 2.26 μs, along with a power density that is 3.6 times that of the current commercially available biaxially oriented polypropylene, as well as great cyclic performance, has been achieved under an electric field of 200 MV/m. The findings of this research demonstrate that the incorporation of linear dielectric PMMA into poly(vinylidene fluoride)‐based ferroelectric polymer provides a new strategy in designing high breakdown strength low loss dielectric materials for reliable compact flexible film capacitors.  相似文献   

3.
Polymer films with enhanced dielectric and breakdown properties are essential for the production of high energy density polymer film capacitors. By capitalizing on the synergistic effects of forced assembly nanolayer coextrusion and biaxial orientation, polymer multilayer films using poly(ethylene terephthalate) (PET) and a poly(vinylidene fluoride‐co‐tetrafluoroethylene) [P(VDF‐TFE)] copolymer were produced. These films exhibited breakdown fields, under a divergent field using needle/plane electrodes, as high as 1000 kV mm?1. The energy densities of these same materials, under a uniform electric field measured using plane/plane electrodes, were as high as 16 J cm?3. The confined morphologies of both PET and P(VDF‐TFE) were correlated to the observed breakdown properties and damage zones. On‐edge P(VDF‐TFE) crystals induced from solid‐state biaxial stretching enhanced the effective P(VDF‐TFE) layer dielectric constant and therefore increased the dielectric contrast between the PET and P(VDF‐TFE) layers. This resulted in additional charge buildup at the layer interface producing larger tree diameters and branches and ultimately increasing the breakdown and energy storage properties. In addition to energy storage and breakdown properties, the hysteresis behavior of these materials was also evaluated. By varying the morphology of the P(VDF‐TFE) layer, the low‐field dielectric loss (or ion migration behavior) could be manipulated, which in turn also changed the observed hysteresis behavior. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 882–896  相似文献   

4.
《先进技术聚合物》2018,29(6):1568-1585
Ever since the discovery of polymer composites, its potential has been anticipated for numerous applications in various fields such as microelectronics, automobiles, and industrial applications. In this paper, we review filler reinforced polymer composites for its enormous potential in microelectronic applications. The interface and compatibility between matrix and filler have a significant role in property alteration of a polymer nanocomposites. Ceramic reinforced polymeric nanocomposites are promising candidate dielectric materials for several micro‐ and nano‐electronic devices. Because of its synergistic effect like high thermal conductivity, low thermal expansion, and dielectric constant of ceramic fillers with the polymer matrix, the resultant nanocomposites have high dielectric breakdown strength. The thermal and dielectric properties are discussed in the view of filler alignment techniques and its effect on the composites. Furthermore, the effect of various surface modified filler materials in polymer matrix, concepts of network forming using filler, and benefits of filler alignment are also discussed in this work. As a whole, this review article addresses the overall view to novice researchers on various properties such as thermal and dielectric properties of polymer matrix composites and direction for future research to be carried out.  相似文献   

5.
采用逐层涂布、 分层控制固化程度的方法, 利用聚酰胺酸(PAA, 聚酰亚胺前体)溶液和含有氧化石墨烯(GO)的PAA溶液制备了一系列由高绝缘性PI层与GO@PI介电层交替组合而成的界面清晰且紧密衔接的多层复合薄膜. 通过调控介电层中GO含量及分层结构, 使多层复合薄膜兼具高介电常数和高击穿强度特征. 结果表明, 三层复合薄膜PI/1.0GO@PI/PI的击穿强度为261.5 kV/mm, 储能密度达到1.27 J/cm3, 与相同介电层厚度的单层薄膜相比, 击穿强度和储能密度分别提高了97%和144%, 同时, 其介电损耗也保持在较低水平(tanδ=0.0079). 绝缘层和高介电常数层的协同作用提升了氧化石墨烯/聚酰亚胺复合薄膜的储能密度. 这种简单的多层结构设计有利于氧化石墨烯/聚合物复合材料在介质储能领域的应用.  相似文献   

6.
颗粒填充聚合物高介电复合材料   总被引:2,自引:0,他引:2  
颗粒填充聚合物高介电复合材料兼具聚合物材料的易加工、低损耗、耐击穿性能和陶瓷材料的高介电等性能,还可使金属材料具备介电性能,可以广泛应用于电气、电子行业。本文综述了非均匀体系介电理论研究的历史背景,以及陶瓷、金属颗粒填充聚合物高介电复合材料的组成、制备及介电性能的影响因素,并着重讨论了界面相在复合材料研究中的重要性,最后展望了发展方向。  相似文献   

7.
Nanocomposites comprising flexible polymers and high dielectric constant inorganic nanoparticles are considered to be one of the promising candidates for electrostatic capacitor dielectrics.However,the effect of interfacial property on electrical ene rgy storage of dielectric polymer nanocomposites is still not clear.Herein,the role of the polarity of the interfacial region is investigated.For this purpose,three polymers with different polarity,polymethyl methacrylate(PMMA),polyglycidyl methacrylate,and polymethylsulfonyl ethyl methacrylate(PMSEMA) are attached onto BaTi03(BT) na noparticle surface via surface-initiated reversible addition-fragmentation chain transfer polymerization.It is found that the polarity of shell polymers shows an apparent effect on the dielectric and energy storage of dielectric polymer nanocomposites.For example,PMSEMA@BT(shell polymer possesses the highest polarity)increases dielectric loss and decreases the breakdown strength of the nanocomposites,leading to lower ene rgy storage capability.However,PMMA@BT(shell polymer possesses the lowest polarity) can induce higher breakdown strength of the nanocomposites.As a result,the PMMA@BT nanocomposite exhibits the highest electrical energy sto rage capability among the three nanocomposites.This re search provides new insight into the design of core-shell nanofillers for dielectric energy storage applications.  相似文献   

8.
As one of the most important energy storage devices, dielectric capacitors have attracted increasing attention because of their ultrahigh power density, which allows them to play a critical role in many high-power electrical systems. To date, four typical dielectric materials have been widely studied, including ferroelectrics, relaxor ferroelectrics, anti-ferroelectrics, and linear dielectrics. Among these materials, linear dielectric polymers are attractive due to their significant advantages in breakdown strength and efficiency. However, the practical application of linear dielectrics is usually severely hindered by their low energy density, which is caused by their relatively low dielectric constant. This review summarizes some typical studies on linear dielectric polymers and their nanocomposites, including linear dielectric polymer blends, ferroelectric/linear dielectric polymer blends, and linear polymer nanocomposites with various nanofillers. Moreover, through a detailed analysis of this research, we summarize several existing challenges and future perspectives in the research area of linear dielectric polymers, which may propel the development of linear dielectric polymers and realize their practical application.  相似文献   

9.
Polymer nanodielectrics have become attractive for practical applications such as electric energy storage and electromechanical actuation. However, to enhance the apparent dielectric constant of polymer nanodielectrics, a significant amount (>30 vol %) of spherical particles needs to be incorporated into the polymer matrix. As a consequence, melt-processing of polymer nanodielectrics into uniform thin films becomes difficult at such a high filler content, and electric breakdown strength will greatly decrease. In this work, we describe a three-phase composite approach towards high energy density nanodielectrics at low filling ratios. In this approach, a highly polarizable tetrameric metallophthalocyanine (TMPc) initiator is coated onto 68 nm BaTiO3 nanoparticles, from which poly(methyl methacrylate) (PMMA) brushes are grafted using atom transfer radical polymerization for the nanoparticles to be uniformly dispersed in a poly(vinylidene fluoride-co-hexafluoropropylene) [P(VDF-HFP)] matrix. For comparison, two-phase P(VDF-HFP)/BaTiO3 composites without the TMPc interfacial layer are also prepared. Owing to the high polarizability of the TMPc interface layer, the three-phase composite films exhibit higher dielectric constant and thus higher energy density than the two-phase composite films at volume-filling ratios below 5 vol %. Therefore, these high energy density three-phase nanodielectrics with a low filling ratio are promising for melt-processing into thin dielectric films. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1669–1680  相似文献   

10.
Photoinitiated cross-linking of poly(vinylidene fluoride-co-chlorotrifluoroethylene) can offer a significant increase in electric energy storage capacity. This improvement is related to the structural changes in the copolymer crystals brought by cross-linking. Cross-linking favors formation of polar crystalline phase, drastic reduction of spherulite sizes, and increase in copolymer inner interface area. This copolymer case demonstrates the greatly enhanced energy storage behavior, including increased discharge energy density at reduced field strength, and improved capacitor efficiency at relatively high degree of cross-linking, which may facilitate a better design for polymer dielectric materials in their application of high energy density capacitors.  相似文献   

11.
A new type of graphene@poly(dopamine)-Ag (Gns@PDA-Ag) core-shell nanoplatelets was designed to improve the dielectric properties of thermoplastic polyurethane (TPU) composites. The microstructure, dielectric performances and the effects of Ag nanoparticles’ content on the dielectric properties of composites were investigated. Results showed that the addition of Gns@PDA-Ag nanoplatelets could effectively improve the dielectric constant of the composite. When tested at low frequency (below 100 Hz), the highest dielectric constant of the TPU/Gns@PDA-0.78Ag (3 wt%) composite was 118.82, which was 14 times higher than that of pure TPU (8.39). This increase in dielectric constant should be attributed to the strong polarization effect of conductive graphene nanoflakes (Gns) and Ag nanoparticles to TPU molecules. The PDA shell could prevent direct contact between Gns and Ag nanoparticles, limit the formation of conductive pathways, which kept the dielectric loss of the composites at a low level and maintained the breakdown strength in a stable state. Compared with pure TPU (0.29), the minimum dielectric loss of composites was only 0.36. Moreover, after Gns@PDA-Ag nanoplatelets with higher Ag content were doped into TPU, the composite showed a higher dielectric constant, and due to the existence of the Coulomb blocking effect, the dielectric loss did not increase significantly. The scalability and simplicity of the described method will provide a promising route to polymer composites for highspeed integrated circuits and energy storage applications.  相似文献   

12.
Composite materials, made by replacing traditional materials, are used because of their capability to produce tailor-made, desirable properties such as high tensile strength, low thermal expansion, and high strength to weight ratio. The need for the development of new materials is essential and growing day by day. The natural sisal/general polymer (GP) reinforced with nanoclay composites has become more attractive due to its high specific strength, light weight, and biodegradability. In this study, sisal–nanoclay composite is developed and its mechanical properties such as tensile strength, flexural strength, and impact strength are evaluated. The interfacial properties, internal cracks, and internal structure of the fractured surface are evaluated using scanning electron microscope. The thermal disintegration of composites are evaluated by thermogravimetric analysis. The results indicate that the incorporation of nanoclay in sisal fiber/GP can improve its properties and can be used as a substitute material for glass fiber-reinforced polymer composites.  相似文献   

13.
Flexibility, robustness, transparency, and recyclability are critical to the application of self-healing polymer materials in the field of flexible electronics. However, integrating all the above properties remains a huge challenge to date. In this work, we put forward a facile strategy to prepare polyurethane (PU) elastomer with ultra-high strength and self-healing performance based on hydrogen bonds, disulfide dynamic chemistry, and microphase separation at the same time. Three different self-healing PUs were obtained by introducing disulfide bonds and different types of hydrogen bonds. A robust, transparent, and recyclable PU with amino-terminated chain extender (PUA) with fast and efficient self-healing performance was prepared. The mechanical and self-healing properties of the PUA were effectively balanced by the synergistic effect of reversible interaction of disulfide bonds and the formation of microphase separated structure. The results indicated that the PUA exhibited high transparency up to 90% and excellent mechanical property, e.g. the tensile strength and elongation at break can reach 37.10 MPa and 1080%, respectively. Meanwhile, it can achieve a high self-healing efficiency of 96.8% at 80 °C for 4 h and maintain 84% of the initial mechanical strength even after four times of recycling. Moreover, the colloid graphite/PUA flexible strain sensor was prepared by the combination of colloid graphite and PUA, which can accurately detect both large and tiny scale deformations.  相似文献   

14.
Since the discovery of relaxor ferroelectric behavior was firstly reported in irradiated poly(vinylidene fluoridetrifluoroethylene) (P(VDF-TrFE)) copolymer, many strategies have been developed to enhance the electrical energy storage capability, including copolymerization, grafting, blending and fabricating of multilayer. This review article mainly summarizes the recent progresses on these strategies and aims to motivate the development of novel PVDF-based polymers for electrical energy storage and dielectric applications.  相似文献   

15.
Covalent organic frameworks (COFs) are known to be a promising class of materials for a wide range of applications, yet their poor solution processability limits their utility in many areas. Here we report a pore engineering method using hydrophilic side chains to improve the processability of hydrazone and β-ketoenamine-linked COFs and the production of flexible, crystalline films. Mechanical measurements of the free-standing COF films of COF-PEO-3 (hydrazone-linked) and TFP-PEO-3 (β-ketoenamine-linked), revealed a Young's modulus of 391.7 MPa and 1034.7 MPa, respectively. The solubility and excellent mechanical properties enabled the use of these COFs in dielectric devices. Specifically, the TFP-PEO-3 film-based dielectric capacitors display simultaneously high dielectric constant and breakdown strength, resulting in a discharged energy density of 11.22 J cm−3. This work offers a general approach for producing solution processable COFs and mechanically flexible COF-based films, which hold great potential for use in energy storage and flexible electronics applications.  相似文献   

16.
Dielectric polymers with high thermal conductivity are very promising in the fields of aerospace and electronic device packaging. However, composites with excellent dielectric properties usually have low thermal conductivity. It is usually to fill the polymer with thermal conductivity particles to improve the thermal conductivity, but the high content of filler often reduces the mechanical properties of the polymer. In this paper, the traditional insulating polymer epoxy resin was used as the matrix, by covering the surface of silicon carbide with graphene to form a core-shell structure and co-filled with nano diamonds to achieve the preparation of high-performance epoxy resin at low content. The results showed that at the filling content of 30 wt%, the thermal conductivity of epoxy nanocomposites showed a dramatic thermal conductivity enhancement of 1263%, the energy storage modulus increased by 1.1 GPa, and the dielectric loss remained unchanged at 50 Hz. The advantages of the composite are the structural design and surface modification of the filler, which not only take advantage of its inherent advantages, but also improve the interface area with the epoxy matrix. The composite materials with excellent properties are expected to provide theoretical guidance for the application of high thermal conductivity dielectric materials.  相似文献   

17.
采用流延热压工艺制备Ba0.6Sr0.4TiO3(BST)/聚偏氟乙烯(PVDF)?聚甲基丙烯酸甲酯(PMMA)复合薄膜,研究了PMMA含量对复合材料微观组织结构和介电性能的影响规律。结果表明,BST相能够均匀分散在聚合物基体中,归因于PMMA与PVDF良好的相容性,2种聚合物之间的界面不分明;随着PMMA含量的增加,复合材料的介电常数先降低后升高,耐击穿强度和介电可调性先增加后减少。PMMA含量(体积分数)为15%的BST/PVDF?PMMA15复合材料的综合性能最佳:介电常数为23.2,介电损耗为0.07,耐击穿强度为1412 kV·cm-1,在550 kV·cm-1偏压场下,介电可调性为26.2%。  相似文献   

18.
Need of renewable green energy sources due to low cost synthesis, mechanically strong, high energy storage capacity with improved dielectric performance have been receiving much attention. Present work render the ZnO particle and flower-like morphology assemble semicrystalline β phase PVDF/BT nanocomposite, successfully synthesized by spin coating method and characterized by XRD, SEM, EDS and FTIR techniques. Also the energy storage density of composite with modified structure is largely increased with value 0.056 Jcm−3 at 6 MV/m which is 66% higher than virgin β-PVDF and 82% piezoelectric energy harvesting efficiency. Maximum dielectric constant is 1774 at 1 Hz for PVDF-BaTiO3-ZnOf [P-BT-ZnOf] nanocomposite film and maximum breakdown strength of 43 kVcm−1. Electrochemical study reveals that P-BT-ZnOf nanocomposite film manifest better potential material. In terms of mechanical performance, P-BT-ZnOf nanocomposite shows maximum Young's modulus of 204 MPa, tensile strength of 28.7 MPa and 23.1% elongation to break. These results provide promising capability to enhance the performance of composites for energy storage application, transducers, sensors, capacitors etc.  相似文献   

19.
This paper selected typical polar polymers which are polyvinylidene fluoride (PVDF) and polyamide (PA) to prepare PA/PVDF blend for energy storage material. Three kinds of PA (PA6, PA66 and PA11) with representative characters were chosen as the main research polymers for blending with PVDF. The electrical properties of three kinds of all-polymeric blends were tested and the microstructure was characterized by X-ray diffractometer (XRD), Fourier transform infrared instrument (FTIR), Scanning electron microscope (SEM) and Differential scanning calorimetry (DSC). Our finding suggests that the created high-ε polymeric blends represent a novel type of material that is easy to process. In addition, the dielectric constant and breakdown strength of PA/PVDFs are relatively high so that it can be applied to electronic components.  相似文献   

20.
Surface group-rich titanium carbide nanosheets (TCNSs) were successfully fabricated by simply etching Ti3AlC2 powders and used as dielectric fillers to promote the dielectric and energy storage performances of poly (vinylidene fluoride-hexafluoropropylene) (PVDF-HFP)-based composites. The PVDF-HFP/TCNS composites realize a high dielectric constant and low dielectric loss of 16.3 and 0.034 at 102 Hz, respectively. Importantly, a high energy storage density (Ue) of 0.367 J cm−3 at 900 kV cm−1 and a high energy storage efficiency (η ≥ 78.9%) at a TCNS content of only 0.5 wt% are obtained, which indicates that incorporating TCNS is an efficient route in enhancing Ue while maintaining a high level η of the PVDF-HFP-based composites. According to detailed characterization results, a mechanism related to the reduction of lamellar crystals in the PVDF-HFP matrix is suggested. The above mechanism restricts the movement of polymer chains near the filler-matrix interface and is proposed to be responsible for the outstanding dielectric and energy storage performances. Consequently, this work provides a simple and effective method for fabricating highly efficient energy storage nanocomposites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号