首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Nanocomposites induced by two-dimensional titanium carbide nanosheets for highly efficient energy storage
Abstract:Surface group-rich titanium carbide nanosheets (TCNSs) were successfully fabricated by simply etching Ti3AlC2 powders and used as dielectric fillers to promote the dielectric and energy storage performances of poly (vinylidene fluoride-hexafluoropropylene) (PVDF-HFP)-based composites. The PVDF-HFP/TCNS composites realize a high dielectric constant and low dielectric loss of 16.3 and 0.034 at 102 Hz, respectively. Importantly, a high energy storage density (Ue) of 0.367 J cm−3 at 900 kV cm−1 and a high energy storage efficiency (η ≥ 78.9%) at a TCNS content of only 0.5 wt% are obtained, which indicates that incorporating TCNS is an efficient route in enhancing Ue while maintaining a high level η of the PVDF-HFP-based composites. According to detailed characterization results, a mechanism related to the reduction of lamellar crystals in the PVDF-HFP matrix is suggested. The above mechanism restricts the movement of polymer chains near the filler-matrix interface and is proposed to be responsible for the outstanding dielectric and energy storage performances. Consequently, this work provides a simple and effective method for fabricating highly efficient energy storage nanocomposites.
Keywords:PVDF  Titanium carbide  Dielectric  Energy storage  Microstructure  Nanosheets
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号