首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exposure to solar ultraviolet (UV) light is the main causative factor for skin cancer. UV exposure depends on environmental and individual factors. Individual exposure data remain scarce and development of alternative assessment methods is greatly needed. We developed a model simulating human exposure to solar UV. The model predicts the dose and distribution of UV exposure received on the basis of ground irradiation and morphological data. Standard 3D computer graphics techniques were adapted to develop a rendering engine that estimates the solar exposure of a virtual manikin depicted as a triangle mesh surface. The amount of solar energy received by each triangle was calculated, taking into account reflected, direct and diffuse radiation, and shading from other body parts. Dosimetric measurements (n = 54) were conducted in field conditions using a foam manikin as surrogate for an exposed individual. Dosimetric results were compared to the model predictions. The model predicted exposure to solar UV adequately. The symmetric mean absolute percentage error was 13%. Half of the predictions were within 17% range of the measurements. This model provides a tool to assess outdoor occupational and recreational UV exposures, without necessitating time-consuming individual dosimetry, with numerous potential uses in skin cancer prevention and research.  相似文献   

2.
Abstract— We present a semi-empirical analytic formula for calculating the direct, diffuse and global solar middle-ultraviolet radiation (280–340 nm) reaching the ground. The formula accommodates variations in wavelength, solar angle, ozone thickness, aerosol thickness, ground albedo, ground elevation, and cloudiness. Analytic representations of biological action spectra are also presented for use in calculations of effective dose at any time of day. Our purpose is to provide a basis for estimating approximate changes in middle-ultraviolet radiation levels reaching the ground caused by anthropogenic changes in the intervening atmosphere.  相似文献   

3.
UV radiation measured on normal-to-the-sun-oriented surfaces can show significantly higher global UV irradiance values compared to measurements on horizontal receivers. The direct component is amplified by the inverse cosine of the zenith angle, but over surfaces with high local albedo this accounts for only about half of the signal rise of global irradiance. The signal rise of the diffuse component, however, is strongly related to local albedo and solar elevation, which is demonstrated by 2 years of measurements of direct, diffuse, global, reflected and global normal-to-the-sun erythemal effective UV irradiance (UVery). Global UVery signal rises, on normal-to-the-sun-oriented versus horizontal receivers, of up to 65% were measured on fresh snow and solar elevation angles below 30 degrees. An empirical expression has been deduced from the measurements relating the ratio of normal-to-the-sun versus horizontal measurements of global UVery to surface albedo and solar elevation. This allows one to calculate the maximum global UVery irradiance levels which are to be expected on normal-to-the-sun-oriented surfaces with respect to horizontal measurements or model calculations.  相似文献   

4.
The ultraviolet‐A (UVA) part of the solar spectrum at the Earth's surface is an essential environmental factor but continuous long‐time monitoring of UVA radiation is rarely done. In Austria, three existing stations of the UV monitoring network have been upgraded with UVA broadband instruments. At each station, one instrument measures global UVA irradiance and—in parallel—a second instrument measures diffuse irradiance. Recent and past measurements are available via a web page. This paper describes the used instruments, calibration and quality assurance and control procedures. Global and diffuse UVA measurements during a period of up to 5 years are presented. Data indicate clear annual courses and an increase of UVA with altitude by 8–9% per 1000 m. In the first half of the year, UVA radiation is higher than in the second half, due to less cloudiness. In Vienna (153 m asl), the mean daily global UVA radiant exposure in summer is almost as high as at Mt. Gerlitzen (1540 m asl), equalizing the altitude effect, due to less cloudiness. However, in winter, the UVA radiant exposure at Mt. Gerlitzen is double as high, as in Vienna.  相似文献   

5.
Abstract— The amount of solar radiation intercepted by an object depends on the orientation of the object with respect to the sun and the angular distribution of the diffuse component of solar radiation, which is commonly considered to be approximately isotropic. The angular distribution of the diffuse UV, visible and near-infrared insolation was measured at several solar zenith angles between 32° and 68° under cloudless skies at Lauder, New Zealand (45S), and shown to be anisotropic. The diffuse solar UV radiation increases markedly with solar elevation and is a large proportion of the total UV irradiance. The diffuse visible light and infrared radiation are small components of the total irradiance and almost independent of solar elevation. The angular distribution of erythemal UV radiation was tabulated and is available on request.  相似文献   

6.
Since 1992 solar ultraviolet (UV) spectral irradiance (290-325 nm) has been measured at two Italian stations of Rome (urban site) and Ispra (semirural site) using Brewer spectrophotometry. The data collected under all sky conditions, are compared with the output of a sophisticated radiative transfer model (System for Transfer of Atmospheric Radiation--STAR model). The STAR multiple scattering scheme is able to cope with all physical processes relevant to the UV transfer through the atmosphere. The experience so far acquired indicates that, in spite of the unavoidable uncertainties in the input parameters (ozone, aerosol, surface albedo, pressure, temperature, relative humidity, cloud cover), measured and computed clear sky iradiances are in reasonable agreement. The STAR model is applied to build up the solar UV geographic patterns in Italy: the daily dose in the range 290-325 nm is computed at about 70 sites where a thorough and homogeneous climatology is available. For each month the concept of an idealized "standard day" is introduced and the surface distribution of solar UV field determined. The map of solar UV patterns for Italy, available for the first time, meets the study requirements in the field of skin and eye epidemiology, as well as in other investigations dealing with the impact of UV on the biosphere. The results are interpreted in terms of atmospheric and meteorological parameters modulating UV radiation reaching the ground.  相似文献   

7.
Weber TP  Stilianakis NI 《Photochemistry and photobiology》2008,84(6):1601-2; author reply 1603-4
We critically investigate the claim put forward by Sagripanti and Lytle ([2007] Photochem. Photobiol. 83, 1278-1282) that inactivation of influenza A virus by solar radiation can explain the seasonality of influenza epidemics. We correct an error in the Sagripanti and Lytle paper and show that changes in relative humidity and temperature affect influenza virus inactivation as strongly as variation in solar radiation. Furthermore, it appears unlikely that transmission in outdoor settings plays an important role during influenza outbreaks, because influenza A virus is sensitive to a wide range of environmental factors.  相似文献   

8.
Using a model developed for estimating solar inactivation of viruses of biodefense concerns, we calculated the expected inactivation of SARS-CoV-2 virus, cause of COVID-19 pandemic, by artificial UVC and by solar ultraviolet radiation in several cities of the world during different times of the year. The UV sensitivity estimated here for SARS-CoV-2 is compared with those reported for other ssRNA viruses, including influenza A virus. The results indicate that SARS-CoV-2 aerosolized from infected patients and deposited on surfaces could remain infectious outdoors for considerable time during the winter in many temperate-zone cities, with continued risk for re-aerosolization and human infection. Conversely, the presented data indicate that SARS-CoV-2 should be inactivated relatively fast (faster than influenza A) during summer in many populous cities of the world, indicating that sunlight should have a role in the occurrence, spread rate and duration of coronavirus pandemics.  相似文献   

9.
Inactivation of influenza virus by solar radiation   总被引:1,自引:0,他引:1  
Influenza virus is readily transmitted by aerosols and its inactivation in the environment could play a role in limiting the spread of influenza epidemics. Ultraviolet radiation in sunlight is the primary virucidal agent in the environment but the time that influenza virus remains infectious outside its infected host remains to be established. In this study, we calculated the expected inactivation of influenza A virus by solar ultraviolet radiation in several cities of the world during different times of the year. The inactivation rates reported here indicate that influenza A virions should remain infectious after release from the host for several days during the winter "flu season" in many temperate-zone cities, with continued risk for reaerosolization and human infection. The correlation between low and high solar virucidal radiation and high and low disease prevalence, respectively, suggest that inactivation of viruses in the environment by solar UV radiation plays a role in the seasonal occurrence of influenza pandemics.  相似文献   

10.
Ultraviolet‐B radiation (280–320 nm) has long been associated with the inactivation of microorganisms in the natural environment. Determination of the environmental inactivation kinetics of specific indicator organisms [used as tools in the field of microbial source tracking (MST)] is fundamental to their successful deployment, particularly in geographic regions subject to high levels of solar radiation. Phage infecting Bacteroides fragilis host strain GB124 (B124 phage) have been demonstrated to be highly specific indicators of human fecal contamination, but to date, little is known about their susceptibility to UV‐B radiation. Therefore, B124 phage (= 7) isolated from municipal wastewater effluent, were irradiated in a controlled laboratory environment using UV‐B collimated beam experiments. All B124 phage suspensions possessed highly similar first order log‐linear inactivation profiles and the mean fluence required to inactivate phage by 4 ? log10 was 320 mJ cm?2. These findings suggest that phage infecting GB124 are likely to be inactivated when exposed to the levels of UV‐B solar radiation experienced in a variety of environmental settings. As such, this may limit the utility of such methods for determining more remote inputs of fecal contamination in areas subject to high levels of solar radiation.  相似文献   

11.
Abstract— The biologically effective dose of solar UV radiation was estimated from the inactivation of UV-sensitive Bacillus subtilis spores. Two types of independent measurements were carried out concurrently at the Aerological Observatory in Tsukuba: one was the direct measurement of colony-forming survival that provided the inactivation dose per minute (ID/min) and the other was the measurement of the spectral irradiance by a Brewer spectrophotometer. To obtain the effective spectrum, the irradiance for each 1 nm wavelength interval from 290 to 400 nm was multiplied with the efficiency for inactivation derived from the inactivation action spectrum of identically prepared spore samples. Integration of the effective spectrum provided the estimate for ID/min. The observed values of ID/min were closely concordant with the calculated values for the data obtained in four afternoons in 1993. The average ratio (±SD) between them was 1.24 (±0.16) for 14 data points showing high inactivation rates (<0.05 ID/min). Considering difficulties in the absolute dosimetry of UV radiation, the concordance was satisfactory and improved credibility of the two types of monitoring systems of biologically effective dose of solar UV radiation.  相似文献   

12.
Life on earth has constantly coped with the impact of solar radiation, especially solar ultraviolet radiation (solar UV). Various biological mechanisms protect us from solar UV. New devices emitting shorter wavelengths UV-C, i.e. <254 nm emitted by conventional UV germicidal lamps, have emerged. These shorter wavelength UV-C emitting devices are useful for various purposes, including microorganism inactivation. However, as solar UV-C does not reach the earth surface, biological impacts of UV-C has been studied using 254 nm germicidal lamps, and those using shorter wavelength UV-C is rarely known. To balance the utility and risk of UV-C, the biological effect of these new UV-C emitting devices must be investigated. In addition, our knowledge of biological impacts of the wavelength-dependent entire UV (100–400 nm) must be enhanced. In this review, we briefly summarize the biological impacts of shorter wavelength UV-C. Mechanisms of UV-C-induced cellular damage and factors affecting the microorganism inactivation efficiency of UV-C have been discussed. In addition, we theoretically estimate the probable photocarcinogenic action spectrum of shorter wavelength UV-C. We propose that increasing the knowledge on UV-C will facilitate the adoption of shorter wavelength UV-C emitting new devices in an optimal and appropriate manner.  相似文献   

13.
This study determined the sensitivity of vaccinia virus, an orthopox virus commonly used as a surrogate for variola virus (etiological agent of smallpox), exposed to UVB radiation emitted by a solar simulator, or to direct natural sunlight. The data obtained indicate that: (1) the virucidal effect of natural sunlight can be mimicked adequately by an artificial light source with similar spectral characteristics in the UVB, (2) viral sensitivity to UVB or to solar radiation can be correlated with experimental data previously obtained with UVC, (3) the correlation factor between virus inactivation by solar radiation (measured at 300 ± 5 nm) and by UVC (254 nm) is between 33 and 60, and (4) the sensitivity of viruses either dry on glass surfaces or in liquid suspension is similar when in the presence of similar amounts of cellular debris and growth media. The findings reported in this study should assist in estimating the threat posed by the persistence of virus during epidemics or after an accidental or intentional release.  相似文献   

14.
The research question of whether there are any influences in the scattered or diffuse erythemal UV exposures to a horizontal plane over a five month period due to the change from standard time to daylight saving time, has been investigated by using physical measurements and applying them to both standard time and daylight saving time. The diffuse erythemal UV was considered for fixed lunch break times and fixed morning and afternoon break times. The cases considered were for groups of the population who are predominantly indoors and who spend their break times outdoors in shade. The biggest influence on the diffuse UV exposures of changing to daylight saving time is the timing of the outdoor meal and break times. The change causes a reduction in diffuse erythemal exposure for early or morning breaks and an increase in the diffuse erythemal exposure for late or afternoon breaks. Similarly, for the lunch break times, the changes in exposure are influenced by the timing of the break with respect to solar noon. Indoor workers who take their breaks outside in a shaded area may have a change in their exposure to diffuse UV due to a shift to daylight saving time, however the magnitude of this change and whether it is a positive or negative change in exposure will depend on the timing of the break. The increase in diffuse UV exposure due to the afternoon break may be negated by the decrease in exposure due to the morning break. In this case, the effect on diffuse UV exposures due to changing to daylight saving time will be minimal.  相似文献   

15.
Our goal was to derive a quantitative factor that would allow us to predict the solar sensitivity of vegetative bacterial cells to natural solar radiation from the wealth of data collected for cells exposed to UVC (254 nm) radiation. We constructed a solar effectiveness spectrum for inactivation of vegetative bacterial cells by combining the available action spectra for vegetative cell killing in the solar range with the natural sunlight spectrum that reaches the ground. We then analyzed previous studies reporting the effects of solar radiation on vegetative bacterial cells and on bacterial spores. Although UVC-sensitive cells were also more sensitive to solar radiation, we found no absolute numerical correlation between the relative solar sensitivity of vegetative cells and their sensitivity to 254 nm radiation. The sensitivity of bacterial spores to solar exposure during both summer and winter correlated closely to their UVC sensitivity. The estimates presented here should make it possible to reasonably predict the time it would take for natural solar UV to kill bacterial spores or with a lesser degree of accuracy, vegetative bacterial cells after dispersion from an infected host or after an accidental or intentional release.  相似文献   

16.
Diffuse solar UV radiation and implications for preventing human eye damage   总被引:1,自引:0,他引:1  
Ocular UV exposure is a function of both the direct and diffuse components of solar radiation. Broadband global and diffuse UV measurements were made in the morning, noon and afternoon. Thirty sets of measurements were made in summer and 50 in each of the other seasons at each of the periods in full sun. Corresponding sets were made in the shade of Australian evergreen trees: 42 trees in summer and 50 in each of the other seasons. The percentage diffuse UV was higher for the shorter 320-400 nm range (UVB) than for 280-320 nm (UVA). The percentage diffuse UVB ranged from 23 to 59%, whereas the percentage diffuse UVA ranged from 17 to 31%. The percentage diffuse UV was lower at noon than in the morning and afternoon with the difference more pronounced for the UVB. The average percentage diffuse UVB over all the measurements in the tree shade for the morning, noon and afternoon was 62, 58 and 71%, respectively, and the average percentage diffuse UVA was 52, 51 and 59%, respectively.  相似文献   

17.
A simple method has been worked out for measuring the biologically effective dose (BED) of solar radiation The method uses phage T7 as a biosensor and it includes field measurements of global and direct UV radiation from the sun in the air; it has been applied to underwater measurements as well. Results of field measurements are presented with discussion of the angle-dependent sensitivity of the biosensor. A model of spectral irradiance based on the measured values is presented. Relevance of the HT7 unit—derived earlier by us from T7 phage inactivation upon UV radiation—as a measure of the BED is also discussed.  相似文献   

18.
Cell survival, synergistic interaction, liquid-holding recovery (LHR) kinetics and inactivation forms after the simultaneous treatment with UV light (254 nm) and various high temperatures were studied in diploid yeast cells Saccharomyces cerevisiae. The synergistic interaction was observed within a certain temperature range in which there was a temperature that maximizes the synergistic effect. The LHR study revealed that both the extent and the rate of recovery greatly decreased with the increase in exposure temperature. A quantitative approach describing the LHR process as a decrease in the effective radiation dose was used to estimate the probability of recovery per unit time and the irreversible component of damage. Using the experimental data obtained and the mathematical model described, it was shown that the irreversible component, i.e. the fraction of cells incapable of recovery, increased with the exposure temperature, whereas the recovery constant, i.e. the probability of recovery per unit time, was independent of the exposure temperature. The increase in the irreversible component was accompanied by an increase in cell death without postirradiation division. It is concluded based on this that the synergistic interaction of UV light radiation and hyperthermia in yeast cells is not related to the impairment of the recovery process itself and that it may be attributed to an increased yield of the irreversible damage.  相似文献   

19.
A solar radiometer (GUV-511 C, Biospherical Instruments Inc., San Diego, CA) with four UV channels has been operating at Trelew (43.2 degrees S, 65.3 degrees W), Argentina, since the austral spring of 1997. The instrument provides global (direct + diffuse) irradiance on the horizontal plane year-round, with a 1 min period. On 1 January 1999, an automatic shadow band was added to calculate diffuse and direct radiation. The period of the measurements was increased to 2 min to keep the same signal to noise (S:N) ratio. Once the direct radiation values were available for the 305 nm and 320 nm spectral bands, the total ozone value was calculated and results were compared with data provided by the U.S. National Aeronautics and Space Administration for the Total Ozone Mapping Spectrometer (TOMS) on the Earth Probe satellite. Results show a root-mean-square (RMS) deviation within 4% compared with that of TOMS, so the quality of results is considered to be quite good. The importance of regular calibration to maintain long-term accuracy is stressed.  相似文献   

20.
A beach umbrella intercepts all direct UV irradiance, but only part of the diffuse component. Using a simple sky view factor model, we have determined the fraction of the hemispheric diffuse irradiance that is not intercepted by the umbrella. Assuming a sensor at the surface and close to the center of the umbrella, isotropic diffuse irradiance and for an umbrella of 80 cm radius and 100 cm high, our results show that approximately 34% of the incident horizontal irradiance is not intercepted by the umbrella. These results agree with irradiance measurements conducted with and without the umbrella. The model is next extended to examine receipt of UV radiation by a human figure in a vertical position, either standing or sitting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号