首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The first set of quantitative data of diffuse erythemal UV and UV-A radiation in tree shade at a sub-tropical Southern Hemisphere latitude is presented. Over the summer, approximately 60% of the erythemal UV radiation in tree shade is due to the diffuse component. Similarly, approximately 56% of the UV-A radiation in tree shade is due to the diffuse component. In tree shade these diffuse UV percentages are relatively constant from the morning to noon to afternoon periods. In comparison, in full sun, there is a decrease in the percentage of diffuse UV from morning to noon to afternoon. The exposures to diffuse UV on a horizontal plane in tree shade between 9:00 EST and 15:00 EST are of the order of 4 MED (minimum erythemal dose) and 14 J cm(-2) for erythemal UV and UV-A, respectively. The high diffuse UV component in the shade may result in high UV exposures not only to unprotected parts of the body on a horizontal plane, but also in equally high UV irradiances to parts of the body, including the eyes and face, that are not UV protected.  相似文献   

2.
Carbon fixation in Antarctic nanoflagellates dominated by cryptomonads collected during a summer cruise in 1995 decreased after short-term exposition (3 h) under both UVA and UVA + UVB radiation compared to white light. The dose applied with artificial lamps was within the range of the natural UV radiation measured at the surface during the cruise. The depletion of C fixation was higher after UVA + UVB than after UVA alone. The inhibition of carbon fixation in the laboratory depended on the time of sample collection and, consequently, on the UV dose received in the natural environment before sampling. Thus, the cells collected in the morning showed 82% of inhibition by UVA + UVB but that collected at noon showed only 72%. The same effect was observed by UVA: 72% of inhibition in the morning samples and 62% at noon. Thus, photoprotection mechanisms seem to be operating during the day protecting the cells against a rise in UV radiation. Red fluorescence (attributed to chlorophyll) per cell, as determined by flow cytometry, was not affected by UV, however, orange fluorescence (attributed to phycoerythrin) increased clearly after UV radiation compared to that in white light. The increment of orange fluorescence was higher after UVA than after UVA + UVB radiation. The rapid increase in fluorescence emission could be due to an uncoupling of energy transfer and it is suggested as a protective mechanism against UV radiation by absorbing UV radiation.  相似文献   

3.
The research question of whether there are any influences in the scattered or diffuse erythemal UV exposures to a horizontal plane over a five month period due to the change from standard time to daylight saving time, has been investigated by using physical measurements and applying them to both standard time and daylight saving time. The diffuse erythemal UV was considered for fixed lunch break times and fixed morning and afternoon break times. The cases considered were for groups of the population who are predominantly indoors and who spend their break times outdoors in shade. The biggest influence on the diffuse UV exposures of changing to daylight saving time is the timing of the outdoor meal and break times. The change causes a reduction in diffuse erythemal exposure for early or morning breaks and an increase in the diffuse erythemal exposure for late or afternoon breaks. Similarly, for the lunch break times, the changes in exposure are influenced by the timing of the break with respect to solar noon. Indoor workers who take their breaks outside in a shaded area may have a change in their exposure to diffuse UV due to a shift to daylight saving time, however the magnitude of this change and whether it is a positive or negative change in exposure will depend on the timing of the break. The increase in diffuse UV exposure due to the afternoon break may be negated by the decrease in exposure due to the morning break. In this case, the effect on diffuse UV exposures due to changing to daylight saving time will be minimal.  相似文献   

4.
The horizontal photon flux density of photosynthetically active radiation (PAR) and flux density of ultraviolet A (UVA) and ultraviolet B (UVB) radiation were measured in the vicinity of isolated single trees during the summer of 1996. Measurements were made under shade and sunlit conditions along a transect aligned with the solar disk and the tree trunk. Flux density measurements were normalized by the flux density at a reference location away from the tree. Results showed (1) a more rapid decline in the flux density of UVA and UVB radiation than PAR with decreasing distance to the tree trunk on both the sunlit and shaded side of a tree and (2) more rapid changes in the flux density of UVB radiation UVA radiation, and PAR with distance from the tree on the sunlit side of the tree than the shaded side of the tree. The UVB/PAR ratio was found to increase in the shadow of a tree with increasing distance from the tree to between 4 and 6 for the conditions of the study. The potential for detrimental effects by UVB flux density under conditions of the high ratio may be mitigated by sunflecks at a given location over the course of a day.  相似文献   

5.
Irradiance measurements of short wave (SW), photosynthetically active (PAR), ultraviolet-A (UVA) and ultraviolet-B (UVB) solar radiations were made on horizontal and vertical surfaces in the shade of trees under cloud-free and partly cloudy skies. All measurements were referenced to the irradiance of a horizontal surface above the canopy. For horizontal shaded surfaces under cloud-free skies, the values of the ratio (Rh) of below- to above-canopy horizontal irradiance were similar for the UVA and UVB wavebands and for the SW and PAR wavebands. However, Rh for the UV wavebands differed from that for the PAR and SW wavebands. Overall, values of Rh in the shade typically varied as PAR < SW < UVA < UVB. The irradiance ratios for vertical surface in the shade typically varied as UVB > UVA = SW > PAR. In absolute terms, UVB irradiance (Ih) on tree-shaded horizontal surfaces increased relative to a cloud-free sky when a translucent cirroform cloud was in front of the sun, but decreased when the cloud was in a region of sky away from the sun. Translucent cirroform cloud cover also tended to decrease the UVB irradiance (Iv) for a shaded vertical surface (either facing the sun or south) relative to that under cloud-free skies, regardless of where the clouds were in the sky. In all other wavebands the shaded Ih and Iv increased under translucent cirroform cloud cover relative to cloud-free skies, regardless of where the clouds were in the sky.  相似文献   

6.
It is well known that UV radiation contributes to the development of skin cancer. Exposure to solar radiation is predominantly responsible for the high incidence rate of skin cancer, but there are also indications that sunbeds are involved. The aim of the present investigation was to determine the UV emission spectra of sunbeds. It included the most common sunbed models, which cover more than 50% of the Swiss market. The UV emission spectra of sunbeds have special characteristics and are different from the sun spectrum, which can be seen in high-resolution spectral measurements. Sunbed emission spectra are similar to the sun spectrum in the UVB (280-320 nm) range but reach values 10 to 15 times higher in the UVA (320-400 nm) range. An average erythema-effective irradiance of 0.33 W/m2 was determined for sunbeds. This corresponds to a UV index of 13, which is significantly higher than the UV index of 8.5 of the high summer sun at noon at intermediate latitudes. The measurements were spread over the whole effective area of the sunbeds, and an inhomogeneous distribution of the irradiances with variations of up to 30% from the average value was found.  相似文献   

7.
Broadband field measurements were conducted beneath three different-sized public shade structures, small, medium and large, during winter in the Southern Hemisphere. These measurements were compared with the diffuse UV to quantify the relationship of the UV under and around the shade structures to the diffuse UV. For the shade structures, a relationship between the diffuse UV and the UV in the shade has been provided for clear skies and solar zenith angles (SZA) of 49-76 degrees. This allows the prediction of the UV in the shade of these structures if the diffuse UV is known. The ultraviolet protection factors for the three shade structures ranged from 1.5 to 5.4 for decreasing SZA. For the greater SZA of 70-76 degrees, the erythemal UV in the shade was 65%, 59% and 51% of that in full sun for the small, medium and large structures, respectively. For the smaller SZA of 50-53 degrees the erythemal UV in the shade was 35%, 41% and 18% for the small, medium and large shade structures, respectively. From this research it can be concluded that the UV radiation levels in the shade in winter could cause erythema and other sun-related disorders.  相似文献   

8.
Daily values of solar global ultraviolet (UV) B and UVA irradiation as well as erythemal irradiation have been parameterized to be estimated from pyranometer measurements of daily global and diffuse irradiation as well as from atmospheric column ozone. Data recorded at the Meteorological Observatory Potsdam (52 degrees N, 107 m asl) in Germany over the time period 1997-2000 have been used to derive sets of regression coefficients. The validation of the method against independent data sets of measured UV irradiation shows that the parameterization provides a gain of information for UVB, UVA and erythemal irradiation referring to their averages. A comparison between parameterized daily UV irradiation and independent values of UV irradiation measured at a mountain station in southern Germany (Meteorological Observatory Hohenpeissenberg at 48 degrees N, 977 m asl) indicates that the parameterization also holds even under completely different climatic conditions. On a long-term average (1953-2000), parameterized annual UV irradiation values are 15% and 21% higher for UVA and UVB, respectively, at Hohenpeissenberg than they are at Potsdam. Daily global and diffuse irradiation measured at 28 weather stations of the Deutscher Wetterdienst German Radiation Network and grid values of column ozone from the EPTOMS satellite experiment served as inputs to calculate the estimates of the spatial distribution of daily and annual values of UV irradiation across Germany. Using daily values of global and diffuse irradiation recorded at Potsdam since 1937 as well as atmospheric column ozone measured since 1964 at the same site, estimates of daily and annual UV irradiation have been derived for this site over the period from 1937 through 2000, which include the effects of changes in cloudiness, in aerosols and, at least for the period of ozone measurements from 1964 to 2000, in atmospheric ozone. It is shown that the extremely low ozone values observed mainly after the eruption of Mt. Pinatubo in 1991 have substantially enhanced UVB irradiation in the first half of the 1990s. According to the measurements and calculations, the nonlinear long-term changes observed between 1968 and 2000 amount to +4%, ..., +5% for annual global irradiation and UVA irradiation mainly because of changing cloudiness and + 14%, ..., +15% for UVB and erythemal irradiation because of both changing cloudiness and decreasing column ozone. At the mountain site, Hohenpeissenberg, measured global irradiation and parameterized UVA irradiation decreased during the same time period by -3%, ..., -4%, probably because of the enhanced occurrence and increasing optical thickness of clouds, whereas UVB and erythemal irradiation derived by the parameterization have increased by +3%, ..., +4% because of the combined effect of clouds and decreasing ozone. The parameterizations described here should be applicable to other regions with similar atmospheric and geographic conditions, whereas for regions with significantly different climatic conditions, such as high mountainous areas and arctic or tropical regions, the representativeness of the regression coefficients would have to be approved. It is emphasized here that parameterizations, as the one described in this article, cannot replace measurements of solar UV radiation, but they can use existing measurements of solar global and diffuse radiation as well as data on atmospheric ozone to provide estimates of UV irradiation in regions and over time periods for which UV measurements are not available.  相似文献   

9.
Spatial measurements of the diffusely scattered sky radiance at a seaside resort under clear sky and slightly overcast conditions have been used to calculate the sky radiance distribution across the upper hemisphere. The measurements were done in the summer season when solar UV radiation is highest. The selected wavelengths were 307, 350 and 550 nm representing the UVB, UVA and VIS band. Absolute values of radiance differ considerably between the wavelengths. Normalizing the measured values by use of direct solar radiance made the spatial distributions of unequal sky radiance comparable. The results convey a spatial impression of the different distributions of the radiance at the three wavelengths. Relative scattered radiance intensity is one order of magnitude greater in UVB than in VIS, whereas in UVA lies roughly in between. Under slightly overcast conditions scattered radiance is increased at all three wavelengths by about one order of magnitude. These measurements taken at the seaside underline the importance of diffuse scattered radiance. The effect of shading parts of the sky can be estimated from the distribution of sky radiance. This knowledge might be useful for sun seekers and in the treatment of people staying at the seaside for therapeutic purposes.  相似文献   

10.
Ultraviolet Radiation at Sites on the Antarctic Coast   总被引:1,自引:0,他引:1  
Ground-based measurements of solar UV irradiance combined with calculations using satellite-based ozone data are able to define the variability in UV sunlight at Palmer Station and McMurdo Station, Antarctica over time scales of years. Special attention focuses on the spring and summer seasons. Satellite data show that the annual ozone loss that occurs during October was greater in1991–1992 than in1979–1980. This led to average noontime UVB irradiances computed for clear skies in the latter period that exceeded those in the earlier time by50–65%. However, a biologically weighted irradiance for suppression of photosynthesis in phytoplankton indigenous to the area near McMurdo Station increased by at most 5% over this period in response to the change in ozone owing to an important contribution from the UVA. At Palmer Station the behavior of ozone and cloudiness can mesh so as to produce the largest noontime UVB irradiances of the year in October as opposed to near summer solstice in December and January. Interannual variability in UVB irradiance during October, the month of the major ozone loss, is larger at Palmer than at McMurdo during the time spanned by ground-based irradiance measurements, being1990–1994. However, interannual variations in cloudiness were more important than changes in ozone in causing the observed year-to-year variability at Palmer Station. The opposite situation prevailed at McMurdo during October, where interannual variations in ozone were responsible for most of the year-to-year differences in UVB received at the ground.  相似文献   

11.
The aims of this paper were to investigate how glass-filtered UV irradiances vary with glass thickness, lamination of the glass and the effect of solar zenith angle (SZA), and to measure the glass-filtered UV exposures to different receiving planes with a newly developed UVA dosimeter. Spectroradiometric and dosimetric techniques were employed in the experimental approach. The percentage of the glass-filtered solar UV compared to the unfiltered UV ranged from 59% to 70% and was influenced to a small extent by the glass thickness and the SZA. The laminated glass transmitted 11 to 12% and the windscreen glass transmitted 2.5-2.6%. The influence of the SZA was less for the thicker glass than it was for the thinner glass. The change in transmission was less than 14% for the SZA between 48 degrees and 71 degrees. There was negligible influence due to the SZA on the glass-transmitted UV of the laminated and windscreen glass. The influence of the glass thickness in the range of 2-6 mm on the percentage transmission was less than 16%. The influences of the glass thickness and the SZA on the glass-transmitted UV have been incorporated in the use of a UVA dosimeter for the glass-transmitted UV exposures. The UVA dosimeter was employed in the field to measure the glass-filtered UV exposures to different receiving planes. The UVA dosimeter reported has the potential for personal solar UVA exposure measurements.  相似文献   

12.
The formation of cyclobutane pyrimidine dimers (CPD) and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) was investigated in Chinese hamster ovary cells upon exposure to either UVC, UVB, UVA or simulated sunlight (SSL). Two cell lines were used, namely AT3-2 and UVL9, the latter being deficient in nucleotide excision repair and consequently UV sensitive. For all types of radiation, including UVA, CPD were found to be the predominant lesions quantitatively. At the biologically relevant doses used, UVC, UVB and SSL irradiation yielded 8-oxodGuo at a rather low level, whereas UVA radiation produced relatively higher amounts. The formation of CPD was 10(2) and 10(5) more effective upon UVC than UVB and UVA exposure. These yields of formation followed DNA absorption, even in the UVA range. The calculated relative spectral effectiveness in the production of the two lesions showed that efficient induction of 8-oxodGuo upon UVA irradiation was shifted toward longer wavelengths, in comparison with those for CPD formation, in agreement with a photosensitization mechanism. In addition, after exposure to SSL, about 19% and 20% of 8-oxodGuo were produced between 290-320 nm and 320-340 nm, respectively, whereas CPD were essentially (90%) induced in the UVB region. However, the ratio of CPD to 8-oxodGuo greatly differed from one source of light to the other: it was over 100 for UVB but only a few units for UVA source. The extent of 8-oxodGuo and CPD was also compared to the lethality for the different types of radiation. The involvement of 8-oxodGuo in cell killing by solar UV radiation was clearly ruled out. In addition, our previously reported mutation spectra demonstrated that the contribution of 8-oxodGuo in the overall solar UV mutagenic process is very minor.  相似文献   

13.
The in vivo reflectance spectra of Caucasian skin, coated with preparations containing sunscreen vehicle, vehicle with olive oil and vehicle with the UVB and UVA absorbers 2-ethylhexyl-4-methoxycinnamate and 4-t-butyl-4'-methoxydibenzoylmethane were determined. All preparations reduced the reflectance of skin throughout the UVA spectral range (320 to 400 nm), with the sunscreen preparations containing the UVB and UVB plus UVA absorbers reducing the reflectance more than the sunscreen vehicle alone. This phenomenon, which facilitates the penetration of UV radiation to the lower epidermis and dermal layers of skin and therefore lessens sunscreen efficacy, is attributed to optical coupling mediated by refractive index matching of the sunscreen to the upper epidermis. The greater reduction in skin diffuse reflectance caused by sunscreens containing methoxycinnamate is associated with this compound's high refractive index. Also, by determining the excitation spectra of the autofluorescence originating from the dermal layer of skin, the transmission spectra of the various components of sunscreen on skin were established, and these were in good general agreement with previously published spectra.  相似文献   

14.
The UV wavelengths in sunlight are the main cause of skin cancer in humans. Sunlight causes gene mutations, immunosuppression and, at higher doses, inflammation. While it is clear that immunosuppression and gene mutations are essential biologic events via which UV causes skin cancer, the requirement for UV-induced inflammation is less certain. Both the UVB (290-320 nm) and UVA (320-400 nm) wavebands within sunlight can cause skin cancer, gene mutations and immunosuppression. However, UVB, but not UVA, at realistic doses can cause inflammation, and UVB induces skin cancer, immunosuppression and gene mutations at doses much lower than those required to cause inflammation. Inflammation enhances skin carcinogenesis, but may not be UV induced, and inflammatory mediators at doses too low to cause inflammation may be required. UV-induced mutations can cause epidermal cells to make proinflammatory factors or to induce them in the surrounding stroma, creating an oxidizing environment in which additional oncogenic mutations are likely to take place, even in the absence of UV. Our hypothesis is therefore that subinflammatory doses of both UVA and UVB cause benign skin tumors. One of the effects of sunlight-induced mutations may be the production of inflammatory mediators that enhance carcinogenesis.  相似文献   

15.
The effect of different wavebands of artificial UV (UVB and UVA) and photosynthetically active radiation (PAR) was assessed in two species of the genus Ulva, U. olivascens and U. rotundata, from southern Spain in order to test for possible differences in acclimation of photosynthesis. Both species share similar morphology but are subject to different light environments: U. rotundata is an estuarine alga, inhabiting subtidal locations, while U. olivascens is an intertidal, sun-adapted organism. Algae were exposed to three different UV conditions, PAR+UVA+UVB, PAR+UVA and PAR for 7 d. Short-term exposure (6 h) was also carried out, using two PAR levels, 150 and 700 micromolm(-2)s(-1). Pigment contents and photosynthesis vs. irradiance curves from oxygen evolution were used to contrast sun- and shade adaptation between these species. O2-based net photosynthesis (Pmax) and PAM-chlorophyll fluorescence (optimal quantum yield, Fv/Fm) were used as parameters to evaluate photoinhibition of photosynthesis in the experiments. The results underline different photobiological characteristics among species: the subtidal U. rotundata had higher contents of pigments (Chl a, Chl b and carotenoids) than the sun-adapted U. olivascens, which resulted in higher thallus absorptance and P-I parameters characterized by higher photosynthetic efficiency at limiting irradiances (alpha) and lower saturating points for photosynthesis (Ek). After 7 d exposure, photoinhibition of Fv/Fm was close to 40-45% in both species. Differences between UV treatments were seen in U. rotundata after 5 d and after 7 d in U. olivascens, in which PAR+UVA impaired strongly photosynthesis (80%). Such patterns were correlated with a progressive decrease in pigment contents, specially chlorophylls. In short-term (6 h) exposures, combinations of UVA+UVB and high PAR level resulted in high rates of photoinhibition of chlorophyll fluorescence (68-92%) in U. rotundata, whereas in U. olivascens photoinhibition ranged between 42% and 53%. Photoinhibition under low PAR combined to UV radiation was lower than observed under high PAR. Net O2-Pmax revealed similar response among the species, with maximal photoinhibition rates close to 60% in algae incubated under high PAR+UVA+UVB. In the case of UV exposure in combination with low PAR, the highest photoinhibition rates were measured in U. rotundata.  相似文献   

16.
In studies involving mice in which doses of UVA (320-400 nm) and UVB (290-320 nm) radiation were administered alone or combined sequentially, we observed a protective effect of UVA against UVB-induced erythema/edema and systemic suppression of contact hypersensitivity. The UVA immunoprotection was mediated by the induction of the stress enzyme heme oxygenase-1 (HO-1) in the skin, protection of the cutaneous Th1 cytokines interferon-gamma (IFN-gamma) and IL-12 and inhibition of the UVB-induced expression of the Th2 cytokine IL-10. In this study, we seek evidence for an immunological waveband interaction when UVA and UVB are administered concurrently to hairless mice as occurs during sunlight exposure in humans. A series of spectra providing varying ratios of UVA/UVB were developed, with the UVA ratio increased to approximately 3.5 times the UVA component in solar simulated UV (SSUV). We report that progressively increasing the UVA component of the radiation while maintaining a constant UVB dose resulted in a reduction of both the erythema/edema reaction and the degree of systemic immunosuppression, as measured as contact hypersensitivity. The UVA-enhanced immunoprotection was abrogated in mice treated with a specific HO enzyme inhibitor. UVA-enhanced radiation also upregulated the expression of cutaneous IFN-gamma and IL-12 and inhibited expression of both IL-6 and IL-10, compared with the activity of SSUV. The results were consistent with the previously characterized mechanisms of photoprotection by the UVA waveband alone and suggest that the UVA component of solar UV may have beneficial properties for humans.  相似文献   

17.
The ultraviolet‐A (UVA) part of the solar spectrum at the Earth's surface is an essential environmental factor but continuous long‐time monitoring of UVA radiation is rarely done. In Austria, three existing stations of the UV monitoring network have been upgraded with UVA broadband instruments. At each station, one instrument measures global UVA irradiance and—in parallel—a second instrument measures diffuse irradiance. Recent and past measurements are available via a web page. This paper describes the used instruments, calibration and quality assurance and control procedures. Global and diffuse UVA measurements during a period of up to 5 years are presented. Data indicate clear annual courses and an increase of UVA with altitude by 8–9% per 1000 m. In the first half of the year, UVA radiation is higher than in the second half, due to less cloudiness. In Vienna (153 m asl), the mean daily global UVA radiant exposure in summer is almost as high as at Mt. Gerlitzen (1540 m asl), equalizing the altitude effect, due to less cloudiness. However, in winter, the UVA radiant exposure at Mt. Gerlitzen is double as high, as in Vienna.  相似文献   

18.
The entomopathogenic hyphomycete Metarhizium anisopliae has been used in programs of agricultural pest and disease vector control in several countries. Exposure to simulated solar radiation for a few hours can completely inactivate the conidia of the fungus. In the present study we determined the effect of exposures to full-spectrum sunlight and to solar ultraviolet A radiation at 320-400 nm (UVA) on the conidial culturability and germination of three M. anisopliae strains. The exposures were performed in July and August 2000 in Logan, UT. The strains showed wide variation in tolerance when exposed to full-spectrum sunlight as well as to UVA sunlight. Four-hour exposures to full-spectrum sunlight reduced the relative culturability by approximately 30% for strain ARSEF 324 and by 100% for strains ARSEF 23 and 2575. The relative UV sensitivity of the two more sensitive strains was different under solar UV from that under ultraviolet B radiation at 280-320 nm (UVB) in the laboratory. Four-hour exposures to solar UVA reduced the relative culturability by 10% for strain ARSEF 324, 40% for strain ARSEF 23 and 60% for strain ARSEF 2575. Exposures to both full-spectrum sunlight and UVA sunlight delayed the germination of the surviving conidia of all three strains. These results, in addition to confirming the deleterious effects of UVB, clearly demonstrate the negative effects of UVA sunlight on the survival and germination of M. anisopliae conidia under natural conditions. The negative effects of UVA in sunlight also emphasize that the biological spectral weighting functions for this fungus must not neglect the UVA wavelengths.  相似文献   

19.
Spectral measurements of the solar ultraviolet spectrum have been made at Reading, England, since July 1989. The data presented show the daily and annual changes in the ultraviolet-B (UV-B) part of the spectrum, and illustrate the dominance of the longer wavelengths in grouping the data into a single broadband measurement. The temporal changes (diurnal and annual) cover 2 orders of magnitude at 300 nm, and a factor of 5 at 320 nm. In a single statement of UV-B levels the trend at longer wavelengths predominates, hiding the larger differences at the more biologically important wavelengths. However, the data also show that at mid-high latitudes the UV irradiance at noon in winter is less than that received at any time during the middle 12 h of daylight in summer, and this should be acknowledged when assessing the consequences of ozone depletion. Atmospheric scattering of short wavelength radiation is compared to that of the entire solar spectrum from measurements of diffuse radiation: on a clear day70–100% of UV-B was diffuse in Reading, with a slight wavelength dependency increasing diffuse radiation at short wavelengths. Under the same conditions scattering of total solar radiation was 21%. The effect of cloud cover is briefly discussed for two specific cases of complete, uniform cloud cover, when attenuation by clouds was approx. 40 and 68%, with little wavelength dependence in either case.  相似文献   

20.
Abstract— In this study measurements are reported that were carried out between August 1983 and December 1985 on the solar middle ultraviolet radiation (UVB-280-320 nm) in Kuwait (29.5°N). These measurements are based primarily on polysulfone film detectors. Comparative measurements were also made on a Robertson-Berger meter and a spectroradiometer. The results reported include the daily variation of the solar UVB between 11:30 a.m. and 12:00 noon over the year, the diurnal variation, as well as the amount of UVB as a function of the receiving angle with the horizontal.
Based on these data the polysulfone films were found to be reliable and inexpensive detectors, giving results similar to those of the R-B meter. The diurnal variation of the solar UVB was found to vary as sin2q, where q is an angle that corresponds to the time since sunrise compared to the sunrise-sunset interval times 180. An empirical equation is developed that gives the maximum UVB as a function of the time of day and day of year. A correlation is determined of the polysulfone readings with the spectroradiometric and the R-B meter measurements. The solar insolation was found to be independent of the receiving angle with the horizontal in the winter months and develops into a cosine dependence in the summer months.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号