首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
本文报道了不同酸性条件下合成的一系列链状钼硫、钨硫簇化合物, 发现硫代钼(钨)酸铵的成簇与酸的强度、浓度、H^+/M(M=Mo、W)比、溶剂、反应气氛密切相关。测定了四个新簇合物的晶体结构, 其中[MoW2S10]^2^-晶体是第一次报道的Mo-W-S混合簇化合物。  相似文献   

2.
Eight new compounds based on [O3PCH2PO3]4- ligands and {MoV2O4} dimeric units have been synthesized and structurally characterized. Octanuclear wheels encapsulating various guests have been isolated with different counterions. With NH4+, a single wheel was obtained, as expected, with the planar CO32- guest, (NH4)12[(MoV2O4)4(O3PCH2PO3)4(CO3)2].24H2O (1a), while with the pyramidal SO32- guest, only the syn isomer (NH4)12[(MoV2O4)4(O3PCH2PO3)4(SO3)2].26H2O (2a) was characterized. The corresponding anti isomer was obtained with Na+ as counterions, Na12[(MoV2O4)4(O3PCH2PO3)4(SO3)2]39H2O (2b), and with mixed Na+ and NH4(+) counterions, Na+(NH4)11[(MoV2O4)4(O3PCH2PO3)4(SO3)2].13H2O (2d). With [O3PCH2PO3]4- extra ligands, the octanuclear wheel Li12(NH4)2[(MoV2O4)4(O3PCH2PO3)4(HO3PCH2PO3)2].31H2O (4a) was isolated with Li+ and NH4+ counterions and Li14[(MoV2O4)4(O3PCH2PO3)4(HO3PCH2PO3)2].34H2O (4c) as a pure Li+ salt. A new rectangular anion, formed by connecting two MoV dimers and two MoVI octahedra via methylenediphosphonato ligands with NH4+ as counterions, (NH4)10[(MoV2O4)2(MoVIO3)2(O3PCH2PO3)2(HO3PCH2PO3)2].15H2)O (3a), and Li9(NH4)2Cl[(MoV2O4)2(MoVIO3)2(O3PCH2PO3)2]. 22H2O (3d) as a mixed NH4+ and Li+ salt have also been synthesized. The structural characterization of the compounds, combined with a study of their behavior in solution, investigated by 31P NMR, has allowed a discussion on the influence of the counterions on the structure of the anions and their stability. Density functional theory calculations carried out on both isomers of the [(MoV2O4)4(O3PCH2PO3)4(SO3)2]12- anion (2), either assumed isolated or embedded in a continuum solvent model, suggest that the anti form is favored by approximately 2 kcal mol(-1). Explicit insertion of two solvated counterions in the molecular cavity reverses this energy difference and reduces it to less than 1 kcal mol(-1), therefore accounting for the observed structural versatility.  相似文献   

3.
Lin PC  Chen HY  Chen PY  Chiang MH  Chiang MY  Kuo TS  Hsu SC 《Inorganic chemistry》2011,50(21):10825-10834
The decarbonylation reaction of ferric carbonyl dicationic [Cp(2)Fe(2)(μ-SEt)(2)(CO)(2)](BF(4))(2) [1(BF(4))(2)] carried out in refluxing acetonitrile affords a binuclear iron-sulfur core complex [Cp(2)Fe(2)(μ-SEt)(2)(CH(3)CN)(2)](BF(4))(2) [2(BF(4))(2)] containing two acetonitrile coordinated ligands. The treatment of 2(BF(4))(2) with 2 equiv of the 1,4-diisocyanobenzene (1,4-CNC(6)H(4)NC) results in the formation of the diisocyanide complex [Cp(2)Fe(2)(μ-SEt)(2)(1,4-CNC(6)H(4)NC)(2)](BF(4))(2) [3(BF(4))(2)]. The rectangular tetranuclear iron thiolate aryldiisocyanide metallocyclophane complex [Cp(4)Fe(4)(μ-SEt)(4)(μ-1,4-CNC(6)H(4)NC)(2)](BF(4))(4) [4(BF(4))(4)] has been synthesized by a self-assembly reaction between equimolar amounts of 2(BF(4))(2) and 1,4-diisocyanobenzene or by a stepwise route involving mixing of a 1:1 molar ratio of complexes 2(BF(4))(2) and 3(BF(4))(2). Chemical reduction of 4(BF(4))(4) by KC(8) was observed to produce the reduction product 4(BF(4))(2). The spectroscopic and electrochemical properties of the iron-sulfur core complexes 1(PF(6))(2), 3(BF(4))(2), 4(BF(4))(4), and 4(BF(4))(2) were determined. Finally, differences between the redox control cavities of rectangular tetranuclear iron thiolate aryldiisocyanide complexes are revealed by a comparison of the X-ray crystallographically determined structures of complexes 4(BF(4))(4) and 4(BF(4))(2).  相似文献   

4.
The reactions of AlCl 3.6H 2O and GaCl 3 with 2-pyridylphosphonic acid (2PypoH 2) and 4-pyridylphosphonic acid (4PypoH 2) afford cyclic aluminum and gallium phosphonate structures of [(2PypoH) 4Al 4(OH 2) 12]Cl 8.6H 2O ( 1), [(4PypoH) 4Al 4(OH 2) 12]Cl 8.11H 2O ( 2), [(2PypoH) 4Al 4(OH 2) 12](NO 3) 8.7H 2O ( 3), [(2PypoH) 2(2Pypo) 4Ga 8Cl 12(OH 2) 4(thf) 2](GaCl 4) 2..8thf ( 4), and [(2PypoH) 2(2Pypo) 4Ga 8Cl 12(OH 2) 4(thf) 2](NO 3) 2.9thf ( 5). Structures 1- 3 feature four aluminum atoms bridged by oxygen atoms from the phosphonate moiety and show structural resemblance to the secondary building units found in zeolites and aluminum phosphates. The gallium complexes, 4 and 5, have eight gallium atoms bridged by phosphonate moieties with two GaCl 4 (-) counterions present in 4 and nitrate ions in 5. The cage structures 1- 3 are interlinked by strong hydrogen bonds, forming polymeric chains that, for aluminum, are thermally robust. Exchange of the phosphonic acid for the more flexible 4PyCH 2PO 3H 2 afforded a coordination polymer with a 1:1 Ga:P ratio, {[(4PyCH 2PO 3H)Ga(OH 2) 3](NO 3) 2.0.5H 2O} x ( 6). Complexes 1- 6 were characterized by single-crystal X-ray diffraction, NMR, and mass spectrometry and studied by TGA.  相似文献   

5.
Fully and partially solvated triply-bonded [Re2]4+ complexes have been synthesized and their X-ray structures are described. A fully solvated dirhenium salt with BArf [tetrakis(3,5-bis(trifluoromethyl)phenyl)borate] as the counter anion [Re2(CH3CN)10][BArf]4 () has been characterized. The solubility of the complex in CH2Cl2 and THF in addition to CH3CN offers the possibility of improved reactivity. The structure of [Re2(micro-O)(CH3CN)10][BF4]4 () that possesses a linear [Re(III)-O-Re(III)]4+ unit is reported. Protonation reactions of cis-Re2Cl2(dppm)2(O2CCH3)2 and trans-Re2Cl4(dppm)2 with HBF4.Et2O in acetonitrile afforded cis and trans [Re2(dppm)2(CH3CN)6][BF4]4 ( and ), respectively. Prolonging the reaction time, however, does not lead to fully solvated complex [Re2(CH3CN)10][BF4]4. The neutral nitrogen donor ligands pynp (2-(2-pyridyl)-1,8-naphthyridine) and tznp (2-(2-thiazolyl)-1,8-naphthyridine) react readily with [Re2(CH3CN)10][BF4]4 to provide trans-[Re2(pynp)2(CH3CN)4][BF4]4 and trans-[Re2(tznp)2(CH3CN)4][BF4]4. The X-ray structures trans-[Re2(pynp)2(CH3CN)4][BF4]4 () and trans-[Re2(tznp)2(CH3CN)4][BF4]3[PF6] () have been determined.  相似文献   

6.
The thioethers 4-tert-butyl-2,6-bis((2-(dimethylamino)ethylimino)methyl)phenyl(tert-butyl)sulfane (tBu-L3) and 4-tert-butyl-2,6-bis((2-(dimethylamino)ethylimino)methyl)phenyl(tert-butyl)sulfane (tBu-L4) react with PdCl2(NCMe)2 to give the dinuclear palladium thiophenolate complexes [(L3)Pd2Cl2]+ (2) and [(L4Pd2(mu-Cl)]2+ (3) (HL3= 2,6-bis((2-(dimethylamino)ethylimino)methyl)-4-tert-butylbenzenethiol, HL4 = 2,6-bis((2-(dimethylamino)ethylamino)methyl)-4-tert-butylbenzenethiol). The chloride ligands in could be replaced by neutral (NCMe) and anionic ligands (NCS-, N3-, CN-, OAc-) to give the diamagnetic Pd(II) complexes [(L3)Pd2(NCMe)2]3+ (4), [(L3)Pd2(NCS)2]+ (5), [(L3)Pd2(N3)2]+ (6), [{(L3)Pd2(mu-CN)}2]4+ (7) and [(L3)Pd2(OAc)]2+ (9). The nitrile ligands in and in [(L3)Pd2(NCCH2Cl)2]3+ are readily hydrated to give the corresponding amidato complexes [(L3)Pd2(CH3CONH)]2+ (8) and [(L3)Pd2(CH2ClCONH)]2+ (10). The reaction of [(L3)Pd2(NCMe)2]3+ with NaBPh4 gave the diphenyl complex [(L3)Pd2(Ph)2]+ (11). All complexes were either isolated as perchlorate or tetraphenylborate salts and studied by IR, 1H and 13C NMR spectroscopy. In addition, complexes 2[ClO4], 3[ClO4]2, 5[BPh4], 6[BPh4], 7[ClO4]4, 9[ClO4]2, 10[ClO4]2 and 11[BPh4] have been characterized by X-ray crystallography.  相似文献   

7.
Three inorganic-organic hybrid solids based on tetravanadate polyanions, {V(4)O(12)}(4-) and cucurbituril, Me(10)Q[5] and Q[5], namely (NH(4))(4)[(V(4)O(12))·(Me(10)Q[5]@0.5H(2)O)(2)]·~13H(2)O (1), Li(4)(H(2)O)(5)[(V(4)O(12))·(Me(10)Q[5]@H(2)O)(2)]·~20H(2)O (2), and Na(4)(H(2)O)(2)[(V(4)O(12))·(Q[5])(2)]·~15H(2)O (3), have been synthesized under hydrothermal conditions. In the structure of compound 1, two {Me(10)Q[5]@0.5H(2)O} moieties connect to one {V(4)O(12)}(4-) cluster through an NH(4)(+) counter-cation to form a trimer unit, which further forms a three-dimensional (3D) supramolecular architecture via extensive hydrogen bonds (H-bonds). Compound 2 contains a one-dimensional (1D) covalently bonded chain structure built by alternate {Me(10)Q[5]@H(2)O} moieties and {Li(2)O(4)(H(2)O)(3)}(2+) dimer units. The anionic {V(4)O(12)}(4-) units bond to every another {Li(2)O(4)(H(2)O)(3)}(2+) dimer unit sitting on the chain through multi-uncoordinated water molecules via H-bonds. Compound 3 is built from {V(4)O(12)}(4-) clusters, Q[5], and sodium cations into a two-dimensional (2D) covalent wavy structure, showing interesting connection between the building units, which is packed into 2D through plentiful H-bonds. It has been found that the cations dramatically affect the coordination of the tetravanadate polyanion and cucurbituril.  相似文献   

8.
A study of the reversible CO2 fixation by a series of macrocyclic dicopper complexes is described. The dicopper macrocyclic complexes [Cu2(OH)2(Me2p)](CF3SO3)2, 1(CF3SO3)2, and [Cu2(mu-OH)2(Me2m)](CF3SO3)2, 2(CF3SO3)2, (Scheme 1) containing terminally bound and bridging hydroxide ligands, respectively, promote reversible inter- and intramolecular CO2 fixation that results in the formation of the carbonate complexes [{Cu2(Me2p)}2(mu-CO3)2](CF3SO3)4, 4(CF3SO3)4, and [Cu2(mu-CO3)(Me2m)](CF3SO3)2, 5(CF3SO3)2. Under a N2 atmosphere the complexes evolve CO2 and revert to the starting hydroxo complexes 1(CF3SO3)2 and 2(CF3SO3)2, a reaction the rate of which linearly depends on [H2O]. In the presence of water, attempts to crystallize 5(CF3SO3)2 afford [{Cu2(Me2m)(H2O)}2(mu-CO3)2](CF3SO3)4, 6(CF3SO3)4, which appears to rapidly convert to 5(CF3SO3)2 in acetonitrile solution. [Cu2(OH)2(H3m)]2+, 7, which contains a larger macrocyclic ligand, irreversibly reacts with atmospheric CO2 to generate cagelike [{Cu2(H3m)}2(mu-CO3)2](ClO4)4, 8(ClO4)4. However, addition of 1 equiv of HClO4 per Cu generates [Cu2(H3m)(CH3CN)4]4+ (3), and subsequent addition of Et3N under air reassembles 8. The carbonate complexes 4(CF3SO3)4, 5(CF3SO3)2, 6(CF3SO3)4, and 8(ClO4)4 have been characterized in the solid state by X-ray crystallography. This analysis reveals that 4(CF3SO3)4, 6(CF3SO3)4, and 8(ClO4)4 consist of self-assembled molecular boxes containing two macrocyclic dicopper complexes, bridged by CO32- ligands. The bridging mode of the carbonate ligand is anti-anti-mu-eta1:eta1 in 4(CF3SO3)4, anti-anti-mu-eta2:eta1 in 6(CF3SO3)4 and anti-anti-mu-eta2:eta2 in 5(CF3SO3)2 and 8(ClO4)4. Magnetic susceptibility measurements on 4(CF3SO3)4, 6(CF3SO3)4, and 8(ClO4)4 indicate that the carbonate ligands mediate antiferromagnetic coupling between each pair of bridged CuII ions (J = -23.1, -108.3, and -163.4 cm-1, respectively, H = -JS1S2). Detailed kinetic analyses of the reaction between carbon dioxide and the macrocyclic complexes 1(CF3SO3)2 and 2(CF3SO3)2 suggest that it is actually hydrogen carbonate formed in aqueous solution on dissolving CO2 that is responsible for the observed formation of the different carbonate complexes controlled by the binding mode of the hydroxy ligands. This study shows that CO2 fixation can be used as an on/off switch for the reversible self-assembly of supramolecular structures based on macrocyclic dicopper complexes.  相似文献   

9.
Treatment of [WH(4)(κ(4)-P4)] (3: P4 = meso-o-C(6)H(4)(PPhCH(2)CH(2)PPh(2))(2)) with aryl isothiocyanate ArNCS at 50 °C afforded the dithiocarbonimidate-isocyanide complex [W(κ(2)-S(2)CNAr)(CNAr)(κ(4)-P4)] (4) in moderate yields. The reaction also produced ArNHCH(3) and a small amount of ArNH(2). The yield of the hydrodesulfurization product ArNHCH(3) increased when the reaction was conducted under H(2) (up to 0.65 equiv. to 3 for Ar = p-MeC(6)H(4) (Tol)). Complex 4 was proposed to be formed via reductive disproportionation of two ArNCS molecules on a zero-valent W species generated by dissociation of H(2) from 3. The reaction of W(0) complex [W(dppe)(κ(4)-P4)] (dppe = Ph(2)PCH(2)CH(2)PPh(2)) with ArNCS also yielded 4 accompanied by free dppe, in contrast to that of [Mo(dppe)(κ(4)-P4)], which had been previously reported to undergo sulfur-atom transfer to phosphine ligands. The dithiocarbonimidate ligands in 4a (Ar = Tol) received the addition of electrophiles [PhMe(2)NH][BF(4)], MeI, and PhCOCl selectively at the N atom to afford the cationic dithiocarbamate complexes [W(κ(2)-S(2)CNHTol)(CNTol)(κ(4)-P4)][BF(4)] (6), [W{κ(2)-S(2)CN(Me)Tol}(CNTol)(κ(4)-P4)]I (7), and [W{κ(2)-S(2)CN(COPh)Tol}(CNTol)(κ(4)-P4)]Cl (8). Complexes 4a, 6, 7, and 8 have been characterized by spectroscopic and crystallographic methods, and the donor strengths of their κ(2)-dithio ligands are discussed.  相似文献   

10.
A new bis-tetradentate acyclic amine ligand L(Et) has been synthesized from 4,6-bis(aminomethyl)-2-phenylpyrimidine and 2-vinylpyridine. Dinuclear complexes, Mn(II)(2)L(Et)(MeCN)(H(2)O)(3)(ClO(4))(4) (1), Fe(II)(2)L(Et)(H(2)O)(4)(BF(4))(4) (2), Co(II)(2)L(Et)(H(2)O)(3)(MeCN)(2)(BF(4))(4) (3), Ni(II)(2)L(Et)(H(2)O)(4)(BF(4))(4) (4), Ni(II)(2)L(Et)(H(2)O)(4)(ClO(4))(4)·8H(2)O (4'), Cu(II)(2)L(Et)(BF(4))(4)·MeCN (5), Zn(II)(2)L(Et)(BF(4))(2)(BF(4))(2)·?MeCN (6), were obtained from 1 : 2 reactions of L(Et) and the appropriate metal salts in MeCN, whereas in MeOH tetranuclear complexes, Mn(II)(4)(L(Et))(2)(OH)(4)(ClO(4))(4) (7), Fe(II)(4)(L(Et))(2)(F)(4)(BF(4))(4)·5/2H(2)O (8), Co(II)(4)(L(Et))(2)(F)(4)(BF(4))(4)·3H(2)O (9), Ni(II)(4)(L(Et))(2)(F)(4)(BF(4))(4)·4H(2)O (10), Cu(II)(4)(L(Et))(2)(F)(4)(BF(4))(4)·3H(2)O (11) and Zn(II)(4)(L(Et))(2)(F)(4)(BF(4))(4) (12), result. Six complexes have been structurally characterized: in all cases each L(Et) is bis-tetradentate and provides a pyrimidine bridge between two metal centres. As originally anticipated, complexes 1, 4' and 6 are dinuclear, while 9, 10 and 12 are revealed to be tetranuclear, with two M(2)(L(Et))(4+) moieties bridged by two pairs of fluoride anions. Weak to moderate antiferromagnetic coupling between the metal centres is a feature of complexes 2, 3, 4, 8, 9 and 10. The dinuclear complexes 1-6 undergo multiple, mostly irreversible, redox processes. However, the pyrimidine-based dicopper(II) complex 5 undergoes a two electron quasi-reversible reduction, Cu(II)(2)→ Cu(I)(2), and this occurs at a more positive potential [E(m) = +0.11 V (E(pc) = -0.03 and E(pa) = +0.26 V) vs. 0.01 M AgNO(3)/Ag] than for either of the dicopper(II) complexes of the analogous pyrazine-based ligands.  相似文献   

11.
The reactions of [Cp*MCl2]2(Cp*=eta5-C5Me5, M = Rh, Ir) with thiacalix[4]arene (TC4A(OH)4) and tetramercaptothiacalix[4]arene (TC4A(SH)4) gave the mononuclear complexes [(Cp*M){eta3-TC4A(OH)2(O)2}] and the dinuclear complexes [(Cp*M)2{eta3eta3-TC4A(S)4}] respectively, while the analogous reactions with dimercaptothiacalix[4]arene (TC4A(OH)2(SH)2) produced the tetranuclear complexes [(Cp*M)2(Cp*MCl2)2-{eta3eta3eta1eta1-TC4A(O)2(S)2}].  相似文献   

12.
The reaction of o-bromobenzoate (1 b) with benzaldehyde (2 a) in the presence of [NiBr(2)(dppe)] (dppe=1,2-bis(diphenylphosphino)ethane) and zinc powder in THF (24 hours, reflux temperature), afforded 3-phenyl-3H-isobenzofuran-1-one (3 a) in an 86 % yield. Similarly, o-iodobenzoate reacts with 2 a to give 3 a, but in a lower yield (50 %). A series of substituted aromatic and aliphatic aldehydes (2 b, 4-MeC(6)H(4)CHO; 2 c, 4-MeOC(6)H(4)CHO; 2 d, 3-MeOC(6)H(4)CHO; 2 e, 2-MeOC(6)H(4)CHO; 2 f, 4-CNC(6)H(4)CHO; 2 g, 4-(Me)(3)CC(6)H(4)CHO; 2 h, 4-C(6)H(5)C(6)H(4)CHO; 2 i, 4-ClC(6)H(4)CHO; 2 j, 4-CF(3)C(6)H(4)CHO; 2 k, CH(3)(CH(2))(5)CHO; 2 l, CH(3)(CH(2))(2)CHO) also underwent cyclization with o-bromobenzoate (1 b) producing the corresponding phthalide derivatives in moderate to excellent yields and with high chemoselectivity. Like 1 b, methyl 2-bromo-4,5-dimethoxybenzoate (1 c) reacts with tolualdehyde (2 b) to give the corresponding substituted phthalide 3 m in a 71 % yield. The methodology can be further applied to the synthesis of six-membered lactones. The reaction of methyl 2-(2-bromophenyl)acetate (1 d) with benzaldehyde under similar reaction conditions afforded six-membered lactone 3 o in a 68 % yield. A possible catalytic mechanism for this cyclization is also proposed.  相似文献   

13.
The silver aluminates AgAl[OC(CF3)2(R)]4 (R = H, CH3, CF3) react with solutions of white phosphorus P4 to give complexes that bind one or two almost undistorted tetrahedral P4 molecules in an fashion: [Ag(P4)2]+[Al(OC(CF3)3)4]+ (1) containing the first homoleptic metal-phosphorus cation, the molecular species (P4)AgAl[OC(CH3)(CF3)2]4 (2), and the dimeric Ag(mu,eta2-P4)Ag bridged [(P4)AgAl[OC(H)(CF3)2]4]2 (3). Compounds 1-3 were characterized by variable-temperature (VT) 31P NMR spectroscopy (1 also by VT 32P MAS-NMR spectroscopy), Raman spectroscopy, and single-crystal X-ray crystallography. Other Ag:P4 ratios did not lead to new species, and this observation was rationalized on thermodynamic grounds. The Ag(P4)2+ ion has an almost planar coordination environment around the Ag+ ion due to d(x2 - y2)(Ag) --> sigma*(P-P) backbonding. Calculations (HF-DFT) on six Ag(P4)2+ isomers 4a-f showed that the planar eta2 form 4a is only slightly favored by 5.2 kJ mol(-1) over the tetrahedral eta2 species 4b; eta1-P4 and eta3-P4 complexes are less favorable (27-76 kJ mol(-1)). The bonding of the P4 moiety in [RhCl(eta2-P4)(PPh3)2], the only compound in which an eta2 bonding mode of a tetrahedral P4 molecule has been claimed, must be regarded as a tetraphosphabicyclobutane, and not as a tetrahedro-P4 complex, on the basis of the published NMR and vibrational spectra, the calculated geometry of [RhCl(P4)(PH3)2] (10), the highly endothermic (385 kJ mol(-1)) calculated dissociation enthalpy of 10 into P4 and RhCl(PH3)2 (11), as well as atoms in molecules (AIM) and natural bond orbital (NBO) population analyses of 10 and the Ag(P4)2+ ion. Therefore, 1-3 are the first examples of species containing eta2-coordinated tetrahedral P4 molecules.  相似文献   

14.
Open-framework cadmium succinates, [CN(3)H(6)](2)[Cd(2)(C(4)H(4)O(4))(Cl)(2)], I; [CN(3)H(6)](2)[Cd(C(4)H(4)O(4))(2)], II; Cd(2)(C(4)H(4)O(4))(2)(C(4)N(2)H(8))(H(2)O)(3), III; [C(4)N(2)H(12)][Cd(2)(C(4)H(4)O(4))(3)].4H(2)O, IV; Cd(C(4)H(4)O(4))(H(2)O)(2), V; and Cd(3)(C(4)H(4)O(4))(2)(OH)(2)], VI, of different dimensionalities have been synthesized by hydrothermal procedure by employing two different strategies, one involving the reaction of Cd salts with organic-amine succinates and the other involving the hydrothermal reaction of Cd salts with a mixture of succinic acid and the organic amine. While the latter procedure yields structures without any amine in them, the former gives rise to amine templated cadmium succinates with open architectures. By employing guanidinium succinate we have obtained I and II, and with piperazinium succinate we obtained III and IV. Of these I has a one-dimensional chain structure, IV has a layered structure, and II and III have three-dimensional architectures. The two cadmium succinates without incorporation of amine, V and VI, possess layered and three-dimensional structures, respectively. The three-dimensional structures II and III exhibit interpenetration similar to that in diamondoid and alpha-polonium type structures, respectively.  相似文献   

15.
在B3PW91/6-311+G(d)计算水平上, 计算并讨论了Ni4Ti2, [Ni4Ti2]2+, [Ni4Ti2]2-与Ni4Ti4, [Ni4Ti4]2+, [Ni4Ti4]2-团簇的几何结构和芳香性. 在构型优化过程中得到了Ni4Ti2(D4h), [Ni4Ti2]2+(D4h), [Ni4Ti2]2-(D4h)和Ni4Ti4(D2h)4个稳定构型, 发现当引入上下2个Ti原子后, Ni4环成为了平面正方形构型. 核无关化学位移(NICS)计算结果表明, Ni4Ti2(D4h)与Ni4Ti4(D2h)的NICS值为正, 而[Ni4Ti2]2+(D4h)和[Ni4Ti2]2-(D4h)的NICS值为负, 且[Ni4Ti2]2-(D4h)的NICS值更负. 同时还发现, 由s与d轨道参与形成的反磁性环流是引起[Ni4Ti2]2+(D4h)和[Ni4Ti2]2-(D4h)具有较大芳香性的主要原因; 其中Ti原子主要提供dz2与s轨道, 而Ni原子主要利用其dz2与dx2-y2轨道形成正方形环, 它们之间构成了球状的d轨道环流, 且[Ni4Ti2]2+(D4h)和[Ni4Ti2]2-(D4h)中还有非常明显的π轨道环流.  相似文献   

16.
The hydrolysis reaction of K(2)(MeZn)(2)(PSitBu(3))(2) in THF/toluene solution yields the [(MeZn)(4)Zn(2)(mu(3)-PSitBu(3))(4)(mu(4)-O)(2)](4-) anions independent of the applied stoichiometry. If the applied molar ratio resembles the composition of the anion, [(thf)K](2)[(eta(6)-toluene)K](2)[(MeZn)(4)Zn(2)(mu(3)-PSitBu(3))(4)(mu(4)-O)(2)] (1) crystallizes from a mixture of THF and toluene. In the case with less water, a phosphanediylzincate moiety is bonded to this anion, and [Zn(PSitBu(3))(2)K(4)(thf)(6)](2)[(MeZn)(4)Zn(2)(mu(3)-PSitBu(3))(4)(mu(4)-O)(2)] (2) crystallizes. However, again the major product is 1. The same anion is also observed with larger and softer cations, and [(thf)(3)Cs(2)](2)[(MeZn)(4)Zn(2)(mu(3)-PSitBu(3))(4)(mu(4)-O)(2)] (3) is obtained if the cesium zincate is used in this reaction. In all of these compounds, the anion is a slightly distorted Zn(6)O(2)P(4) double-heterocubane cage with a central Zn(2)O(2) ring having Zn-O bond lengths of approximately 207 pm.  相似文献   

17.
MeNH(2) reacts with silver salts AgX (2:1) to give [Ag(NH(2)Me)(2)]X [X = TfO = CF(3)SO(3) (1.TfO) and ClO(4) (1.ClO(4))]. Neutral mono(amino) Rh(III) complexes [Rh(Cp*)Cl(2)(NH(2)R)] [R = Me (2a), To = C(6)H(4)Me-4 (2b)] have been prepared by reacting [Rh(Cp*)Cl(mu-Cl)](2) with RNH(2) (1:2). The following cationic methyl amino complexes have also been prepared: [Rh(Cp*)Cl(NH(2)Me)(PPh(3))]TfO (3.TfO), from [Rh(Cp*)Cl(2)(PPh(3))] and 1.TfO (1:1); [Rh(Cp*)Cl(NH(2)R)2]X, where R = Me, X = Cl, (4a.Cl), from [Rh(Cp*)Cl(mu-Cl)]2 and MeNH2 (1:4), or R = Me, X = ClO4 (4a.ClO4), from 4a.Cl and NaClO4 (1:4.8), or R = To, X = TfO (4b.TfO), from [Rh(Cp*)Cl(mu-Cl)](2), ToNH(2) and TlTfO (1:4:2); [Rh(Cp*)(NH(2)Me)(tBubpy)](TfO)(2) (tBubpy = 4,4'-di-tert-butyl-2,2'-bipyridine, 5.TfO), from 2a, TlTfO and tBubpy (1:2:1); [Rh(Cp*)(NH(2)Me)(3)](TfO)2 (6.TfO) from [Rh(Cp*)Cl(mu-Cl)](2) and 1.TfO (1:4). 2-6 constitute the first family of methyl amino complexes of rhodium. 1 and 4a.ClO(4) react with acetone to give, respectively, the methyl imino complexes [Ag{N(Me)=CMe(2)}()]X [X = TfO (7.TfO), ClO(4) (7.ClO(4))], and [Rh(Cp*)Cl(Me-imam)]ClO(4) [8.ClO(4), Me-imam = N,N'-N(Me)=C(Me)CH(2)C(Me)(2)NHMe]. 7.X (X = TfO, ClO(4)) are new members of the small family of methyl acetimino complexes of any metal whereas 8.ClO4 results after a double acetone condensation to give the corresponding bis(methyl acetimino) complex and an aldol-like condensation of the two imino ligands. The acetimino complex [Ag(NH=CMe(2))(2)]ClO(4) reacts with [Rh(Cp*)Cl(imam)]ClO(4) [1:1, imam = N,N'-NH=C(Me)CH(2)C(Me)(2)NH(2)] to give [Rh(Cp*)(imam)(NH=CMe(2))](ClO(4))(2) (9a.ClO(4)). 8.ClO(4) reacts with AgClO(4) (1:1) in MeCN to give [Rh(Cp*)(Me-imam)(NCMe)](ClO(4))2 (9b.ClO(4)), which in turn reacts with XyNC (Xy = C(6)H(3)Me(2)-2,6) or with MeNH(2) (1:1) to give [Rh(Cp*)(Me-imam)L](ClO(4))(2) [L = XyNC (9c.ClO(4)), MeNH(2) (9d.ClO(4))]. 6.TfO reacts with acetophenone to give [Rh(Cp*){C,N-C(6)H(4)C(Me)=N(Me)-2}(NH(2)Me)]TfO (10a.TfO), the first complex resulting from such a condensation and cyclometalation reaction. In turn, 10a.TfO reacts with isocyanides RNC (1:1) at room temperature to give [Rh(Cp*){C,N-C(6)H(4)C(Me)=NMe-2}(CNR)]TfO [R = tBu (10b.TfO), Xy (10c.TfO)], or 1:12 at 60 degrees C to give [Rh(Cp*){C,N-C(=NXy)C(6)H(4)C(Me)=N(Me)-2}(CNXy)]TfO (11.TfO). The crystal structures of 9a.ClO(4).acetone-d6, 9c.ClO(4), and 10a.TfO have been determined.  相似文献   

18.
Shiu KB  Liu SA  Lee GH 《Inorganic chemistry》2010,49(21):9902-9908
The self-assembly of supramolecular metallacycles via the coordination-driven directional bonding approach can be modified to produce some unexpected structural variations. The combination of a flexible ligand-capped dinuclear transition-metal acceptor like [Cu(2)(dppm)(2)(NCMe)(2)]X(2) (1X(2); dppm = Ph(2)PCH(2)PPh(2); X(-) = BF(4)(-), PF(6)(-), or BPh(4)(-)) with monodentate-bidentate donors like 2-, 3-, and 4-pyridylcarboxylates produced oligomeric compounds [{Cu(2)(dppm)(2)}(μ-(2-PyCO(2)))](2)X(2) (2X(2)), [{Cu(2)(dppm)(2)}(μ-(3-PyCO(2)))](2)X(2) (3X(2)), and [{Cu(2)(dppm)(2)}(μ-(4-PyCO(2)))](4)X(4) (4X(4)), respectively, as the thermodynamically stable products in one-pot reactions. However, the modified self-assembly is still subject to steric hindrance. The reaction of complex 1(BF(4))(2) with 6-Me-3-PyCO(2)H did not produce a polygonal dimeric metallacycle but a simple dinuclear complex, [Cu(2)(dppm)(2)(6-Me-3-PyCO(2))](BF(4)) (5(BF(4))). The crystal structures of complexes 2(PF(6))(2), 3(PF(6))(2), 4(BF(4))(4), and 5(BF(4)) were determined using X-ray diffraction.  相似文献   

19.
The reactivity of [MoS(4)](2-) (1) toward PMe(3) was explored in the presence and absence of proton donors. Whereas MeCN solutions of (Et(4)N)(2)[MoS(4)] and PMe(3) are stable, in the presence of H(2)S such solutions catalyze formation of H(2) and SPMe(3). Addition of NH(4+) to such solutions afforded MoS(2)(PMe(3))(4) (2), which can be prepared directly from (NH(4))(2)[1]. Compound 2 is reactive toward thiols via a process proposed to involve the initial dissociation of one PMe(3) ligand, a hypothesis supported by the relative inertness of trans-MoS(2)(dmpe)(2). Benzene solutions of 2 react with EtSH to give Mo(2)(mu-S)(mu-SH)(PMe(3))(4)(SEt)(3) (3Et). Analogous reactions with thiocresol (MeC(6)H(4)SH) and H(2)S gave Mo(2)(mu-S)(mu-SH)(PMe(3))(4)(SR)(3) (R = tol, H). Crystallographic analyses of 3Et, 3H, and 3tol indicate dinuclear species with seven terminal ligands and a Mo(2)(mu-SR)(mu-S) core (r(Mo)(-)(Mo) = 2.748(1) A). From reaction mixtures leading to 3Et from 2, we obtained the intermediate Mo(IV)(2)(mu-S)(2)(SEt)(4)(PMe(3))(2) (4), an edge-shared bis(trigonal pyramidal) structure. Compounds 3H and 3Et react further with H(2)S to give Mo(4)(mu(2)-S)(4)(mu(3)-S)(2)(PMe(3))(6)(SH)(2) (5H) and Mo(4)(mu(2)-S)(4)(mu(3)-S)(2)(PMe(3))(6)(SEt)(2) (5Et), respectively. Analogously, W(4)(mu(2)-S)(4)(mu(3)-S)(2)(PMe(3))(6)(SH)(2) was synthesized from a methanol solution of (NH(4))(2)WS(4) with H(2)S and PMe(3). A highly accurate crystallographic analysis of (NH(4))(2)MoS(4) (R(1) = 0.0193) indicates several weak NH.S interactions.  相似文献   

20.
By fine-tuning the reaction temperature to 5, 15, 30, and 50 degrees C, respectively, four different complexes, [Cd(HC4O4)2(H2O)4] (1), [Cd4(C4O4)4(H2O)16].(H2O)2 (2), [Cd(C4O4)(H2O)2] (3), and [Cd(C4O4)(H2O)2] (4), were formed successfully from the identical initial reaction mixture. Moreover, an unprecedented reversible interconversion among the four complexes at the corresponding reaction temperatures mediated by the mother liquor was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号