首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies on synthesis, structures, and photophysics have been carried out for a series of luminescent copper(I) halide complexes with the chelating ligand, 1,2-bis[diphenylphosphino]benzene (dppb). The complexes studied are halogen-bridged dinuclear complexes, [Cu(mu-X)dppb]2 (X = I (1), Br (2), Cl (3)), and a mononuclear complex, CuI(dppb)(PPh3) (4). These complexes in the solid state exhibit intense blue-green photoluminescence with microsecond lifetimes (emission peaks, lambdamax = 492-533 nm; quantum yields, Phi = 0.6-0.8; and lifetimes, tau = 4.0-10.4 mus) at 298 K. In 2-methyltetrahydrofuran (2mTHF) solutions at 298 K, only 1 and 4 show weaker emission (Phi = 0.009) with shorter lifetimes (tau = 0.35 and 0.23 mus) and red-shifted spectra (lambdamax = 543 and 546 nm). The emission in the solid state originates from the (M + X)LCT excited state with a distorted-tetrahedral conformation, in which emissive excited states, 1(M + X)LCT and 3(M + X)LCT, are in equilibrium with an energy difference of approximately 2 kcal/mol. On the other hand, the complexes in the 2mTHF solutions emit from the MLCT excited state with an energetically favorable flattened conformation in the temperature range of 298-130 K. The flattened geometry with equilibrated 1MLCT and 3MLCT states has a nonradiative rate at least 2 orders of magnitude larger than that of the distorted-tetrahedral geometry, leading to a much smaller emission quantum yield (Phi = 0.009) at 298 K. Since the flattening motion is markedly suppressed below 130 K, the emission observed in 2mTHF below 130 K is considered to occur principally from the (M + X)LCT state with a distorted-tetrahedral geometry. To interpret the photophysics of 1 and 4 in both the solid and solution states, we have proposed the "2-conformations with 2-spin-states model (2C x 2S model)". The electroluminescence device using (1) as a green emissive dopant showed a moderate EL efficiency; luminous efficiency = 10.4 cd/A, power efficiency = 4.2 lm/W at 93 cd/m(2), and maximum external quantum efficiency = 4.8%.  相似文献   

2.
Wei LP  Ren ZG  Zhu LW  Yan WY  Sun S  Wang HF  Lang JP  Sun ZR 《Inorganic chemistry》2011,50(10):4493-4502
Treatment of [Et(4)N][Tp*WS(3)] (1) (Tp* = hydridotris(3,5-dimethylpyrazol-1-yl)borate) with 2 equiv of AgSCN in MeCN afforded a novel neutral compound [(Tp*WS(2))(2)(μ-S(2))] (2). Reactions of 2 with excess CuX (X = Cl, Br, I) in MeCN and CH(2)Cl(2) or CHCl(3) formed three neutral W/Cu/S clusters [{Tp*W(μ(3)-S)(3)Cu(3)(μ-Cl)}(2)Cu(μ-Cl)(2)(μ(7)-Cl)(MeCN)](2) (3), [{Tp*W(μ(3)-S)(3)Cu(3)}(2)Br(μ-Br)(2)(μ(4)-Br)(MeCN)] (4), and [{Tp*W(μ(3)-S)(3)Cu(3)}(2){Cu(2)(μ-I)(4)(μ(3)-I)(2)}] (5), respectively. On the other hand, treatment of 2 with CuX (X = Cl, Br) in the presence of Et(4)NX (X = Cl, Br) produced two anionic W/Cu/S clusters [Et(4)N][{Tp*W(μ(3)-S)(3)Cu(3)X}(2)(μ-X)(2)(μ(4)-X)] (6: X = Cl; 7 X = Br). Compounds 2-7 were characterized by elemental analysis, IR, UV-vis, (1)H NMR, electrospray ionization (ESI) mass spectra, and single-crystal X-ray crystallography. The dimeric structure of 2 can be viewed as two [Tp*WS(2)] fragments in which two W atoms are connected by one S(2)(2-) dianion. Compounds 3-7 all possess unique halide-bridged double cubanelike frameworks. For 3, two [Tp*W(μ(3)-S)(3)Cu(3)](2+) dications are linked via a μ(7)-Cl(-) bridge, two μ-Cl(-) bridges, and a [Cu(MeCN)(μ-Cl)(2)](+) bridge. For 4, one [Tp*W(μ(3)-S)(3)Cu(3)(MeCN)](2+) dication and one [Tp*W(μ(3)-S)(3)Cu(3)Br](+) cation are linked via a μ(4)-Br(-) and two μ-Br(-) bridges. For 5, the two [Tp*W(μ(3)-S)(3)Cu(3)](2+) dications are bridged by a linear [(μ-I)(2)Cu(μ(3)-I)(2)Cu(μ-I)(2)](4+) species. For 6 and 7, two [Tp*W(μ(3)-S)(3)Cu(3)X](+) cations are linked by a μ(4)-X(-) and two μ-X(-) bridges (X = Cl, Br). In addition, the third-order nonlinear optical (NLO) properties of 2-7 in MeCN/CH(2)Cl(2) were investigated by using femtosecond degenerate four-wave mixing (DFWM) technique.  相似文献   

3.
1 INTRODUCTION The coordination chemistry of bithioethers with noble metal ions has received considerable attention for a very long time due to their appli- cations in extracting noble metals. A number of Pt(Ⅱ) complexes with such ligands have been reported[1~7], among which some crystal structures have been determined[4~7]. However, most of these structures are Pt(Ⅱ) complexes of a few bithioether ligands with flexible alkyl spacers, RS(CH2)nSR. To our knowledge, the crystal str…  相似文献   

4.
Tetrahedral gold(I) complexes containing the diphosphane ligand (dppb=1,2-bis(diphenylphosphino)benzene), [Au(dppb)(2)]X [X=Cl (1), Br (2), I (3), NO(3) (4), BF(4) (5), PF(6) (6), B(C(6)H(4)F-4)(4) (7)], and the ethanol and methanol adducts of complex 4, 8, and 9, were prepared to analyze their unique photophysical properties. These complexes are classified into two categories on the basis of their crystal structures. In Category I, the complexes (1-5) have relatively-small counter anions and two dppb ligands are symmetrically coordinated to the central Au(I) atom, and display an intense blue phosphorescence. Alternatively, the complexes (6-9) in Category II have large counter anions and two dppb ligands asymmetrically coordinated to Au(I) atom, and display a yellow or yellow orange phosphorescence. The difference in the phosphorescence color of the complexes between the Category I and II is ascribed to the change in the structure of the cationic moiety in the complex. According to DFT calculations, the symmetry reduction caused by the large counter anion of the complex in Category II gives the destabilization of HOMO (σ*) levels, leading to the red-shift of the emission peak. We have demonstrated that the symmetry reductions are responsible for the phosphorescence color alteration caused by external stimuli (volatile organic compounds and mechanical grinding).  相似文献   

5.
A series of palladium(II) complexes with 1,2-bis[di(benzo-15-crown-5)phosphino]ethane ligand (dbcpe), [Pd(dbcpe)X2] (X = Cl 1, Br 2 and I 3), have been successfully synthesised and characterised. The X-ray crystal structure of dbcpe has also been determined. The cation-binding properties of the complexes have been studied and the stability constants with alkali metal cations determined. The crown-free analogue of dbcpe, 1,2-bis[bis(3,4-dimethoxyphenyl)phosphino]ethane (ddmppe), and the related complexes have also been prepared and comparison studies have been made.  相似文献   

6.
1,2-Bis(pentaphenylphenyl)benzene (2) was synthesized by the cycloaddition of 1,2-bis(phenylethynyl)benzene and tetracyclone. Its X-ray structure was determined, and the molecule adopts a C2-symmetric conformation in the crystal. Monomethoxy and dimethoxy derivatives of compound 2 were also prepared, and dynamic NMR studies of these compounds yielded a free energy of activation for racemization (ΔG3rac) of 20.3?kcal/mol at 423?K. The results are compared with estimates of ΔG3rac for 2 by various DFT methods.  相似文献   

7.
Bosch E  Barnes CL 《Inorganic chemistry》2001,40(13):3097-3100
The design, synthesis, and complexation characteristics of the bipyridyl ligand 1,2-bis-(2-pyridylethynyl)benzene are described. The X-ray crystallographic characterization of the 1:1 complexes of 1,2-bis(2-pyridylethynyl)benzene with silver(I) triflate and palladium(II) chloride are described. In the X-ray crystal structure of the silver(I) triflate complex the ligand is essentially planar with negligible distortion compatible with a good fit of the cation in the "cavity" between the pyridine N atoms. Indeed the silver center is almost linear with the N(1)-Ag(1)-N(2) angle of 177.02(10) degrees. The ligand is also essentially planar in the palladium(II) chloride complex with square planar coordination about the palladium with the N(1)-Pd(1)-N(2), Cl(2)-Pd(1)-Cl(2), and N(1)-Pd(1)-Cl(2) angles at 179.53(7), 177.17(2), and 90.52(5) degrees, respectively.  相似文献   

8.
Dioxygen addition to the 16-electron complexes [OsX(P-P)2]+ (3) gives the dioxygen adducts [OsCl(eta 2-O2)(P-P)2]+ (3), which in turn react with HCl gas to give the novel osmium(IV) oxo complexes trans-[OsX(O)(P-P)2]+ (5) (X = Cl, Br; P-P = 1,2-bis(dicyclohexylphosphino)ethane (dcpe), 1,2-bis(diethylphosphino)ethane (depe), 1,2-bis((2R,5R)-2,5-dimethylphospholano)benzene (Me-duphos)). The complexes [OsX(dcpe)2]+ (X = Cl, Br) (3) are studied by X-ray crystallography and are shown to have a "Y-shaped" coordination geometry in the equatorial plane. The X-ray structural analysis of [OsCl(eta 2-O2)(dcpe)2]+ (4a) reveals an exceptionally short O-O bond (1.315(5) A). trans-[OsCl(O)(dcpe)2]+ (5a), the first oxo complex of osmium(IV) investigated crystallographically, exhibits a long Os-O distance of 1.834(3) A. The reactivity of 4 and 5 as oxidants is described. The dioxygen complex 4a transfers one oxygen atom to PPh3 (to give Ph3PO) or oxidizes iodide ions to triiodide ions in the presence of anhydrous HCl. In both reactions, the corresponding oxo species 5a is quantitatively formed as the only metal-containing product. Oxo complexes 5 are surprisingly stable and unreactive toward standard reducing agents such as phosphines.  相似文献   

9.
Li K  Xu H  Xu Z  Zeller M  Hunter AD 《Inorganic chemistry》2005,44(24):8855-8860
This paper reports our initial efforts to integrate phenylacetylene-based conjugate pi-electron systems into hybrid semiconductive coordination networks, as part of the larger scheme to fully synergize organic functionalities and electronic properties in crystalline solid-state materials. On the basis of a well-established Pd-catalyzed procedure, ligands of 3,3',4,4'-tetrakis(methylthio)tolan (L1) and 1,3,5-tris[[3,4-bis(methylthio)phenyl]ethynyl]benzene (L2) were efficiently synthesized in relatively simple procedures. Molecule L1 reacts with BiBr3 to form a 2D semiconductive coordination network (L1.2BiBr3), which consists of infinite chains of the BiBr3 component cross-linked by L1 through the chelation between the 1,2-bis(methylthio) groups and the Bi(III) centers. Molecule L2 reacts with BiBr3 to from a 1D semiconductive coordination network (L2.2BiBr3), which features discrete tetrameric Bi4Br12 units linked by the thioether groups from L2 [only two of the three 1,2-bis(methylthio) groups from each L2 molecule are bonded to the Bi(III) centers]. Diffuse reflectance spectra of both L1.2BiBr3 and L2.2BiBr3 feature strong optical absorptions at energy levels significantly lower than those of the corresponding molecular solids (L1 and L2) and BiBr3, indicating significant electronic interaction between the organic pi-electron systems and the BiBr3 components. Both L1.2BiBr3 and L2.2BiBr3 readily form in high yields and are stable to air, providing advantages for further studies as potentially applicable semiconductive materials.  相似文献   

10.
The preparation of complexes [MX2( 1 )] (M = Ni, Pd, and Pi; X - Cl, Br, and I; 1 = 1,2-bis[(diphenylphosphino)methyl]benzene). [Pt(OSO2CH3)Et( 1 )], [Pt(alkene)( 1 )] (alkene - C2H2, and CH2 = CHCN), and [( 1 )Pt-(μ-H)2PtH( 1 )][BPh4] is reported. Their 1H- and 31P-NMR spectra were recorded and used lor structural assignments. The X-ray crystal structure of [Pt(C2H4)( 1 )] was determined. It is shown that the P? Pt? P bond angle in this complex differs significantly from those found in related compounds with monodentate phosphines, and that this difference is likely to be due to intramolecular contacts.  相似文献   

11.
A new method for the reductive debromination of 1,2-bis(bromomethyl)arenes has been developed. The treatment of 1,2-bis(bromomethyl)benzene with tetrakis(dimethylamino)ethylene (TDAE) (1) in the presence of olefins gave 1,2,3,4-tetrahydronaphthalenes in moderate to good yields.  相似文献   

12.
Polymers of 1,4-bis[2-(N-vinyl)pyrrolyl]benzene with free N-vinyl groups in side chains are synthesized in the presence of AIBN (2–5 wt %, 70°C) with a yield of up to 34% and a molecular mass of up to 11.5 × 103. In the presence of cationic catalysts (Me3SiCl, the LiBF4-dimethoxyethane system, and BF3 · OEt2), 1,4-bis[2-(N-vinyl)pyrrolyl]benzene gives macromolecules with alternating 1,2-pyrrolene and ethylidene units in the backbone with yields of 80, 44, and 33%, respectively. The polymers demonstrate paramagnetic and luminescent properties.  相似文献   

13.
用X射线单晶衍射法测定了反-1,2-双[2'-(5'-苯基恶唑基)]乙烯(POEOP)的晶体结构,POEOP晶体属单斜晶系, 空间群为P2~1/C, a=0.8268(2), b=0.5977(2), c=1.6292(3)nm;β=100.55(2)°; v=0.7915nm~3; Z=2; d~x=1.319g/cm~3。POEOP分子具有中心对称性,它的两个苯环和两个恶唑环是彼此平行的, 但整个分子却稍有些扭曲成螺旋浆式构型。键长数据表明POEOP分子中苯环与恶唑环以及恶唑环与C'=C双键间均有很大程度共轭。  相似文献   

14.
Unsymmetrical 1,2-bis(diorganylsilyl)ethanes were synthesized by two procedures. Hydrosilylation of chloro(vinyl)silanes were used to obtain compounds of the general formula ClMe2SiCH2CH2SiRMeCl with different substituents (R = Et, Vin, Ph) on the silicon atom. Chlorodealkylation of 1,2-bis(trialkylsilyl)ethanes gave compounds of the general formula ClAlk2SiCH2CH2SiAlk2Cl (Alk = Me, Et, Pr). It is established that the latter reaction provides high yields only with Me-and Et-substituted compounds, whereas Pr-substituted products are formed in poor yields. The mechamism of this reaction based on quantum-chemical calculations is offered.  相似文献   

15.
The cluster [W(3)S(4)H(3)(dmpe)(3)](+) (1) (dmpe=1,2-bis(dimethylphosphino)ethane) reacts with HX (X=Cl, Br) to form the corresponding [W(3)S(4)X(3)(dmpe)(3)](+) (2) complexes, but no reaction is observed when 1 is treated with an excess of halide salts. Kinetic studies indicate that the hydride 1 reacts with HX in MeCN and MeCN-H(2)O mixtures to form 2 in three kinetically distinguishable steps. In the initial step, the W-H bonds are attacked by the acid to form an unstable dihydrogen species that releases H(2) and yields a coordinatively unsaturated intermediate. This intermediate adds a solvent molecule (second step) and then replaces the coordinated solvent with X(-) (third step). The kinetic results show that the first step is faster with HCl than with solvated H(+). This indicates that the rate of protonation of this metal hydride is determined not only by reorganization of the electron density at the M-H bonds but also by breakage of the H-X or H(+)-solvent bonds. It also indicates that the latter process can be more important in determining the rate of protonation.  相似文献   

16.
New Pt complexes of chelating bisguanidines and guanidinate ligands were synthesized and characterized. 1,2-Bis(N,N,N',N'-tetramethylguanidino)benzene (btmgb) was used as a neutral chelating bisguanidine ligand, and 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidinate (hpp(-)) as a guanidinate ligand. The salts [btmgbH](+)[HOB(C(6)F(5))(3)](-) and [btmgbH(2)]Cl(2) and the complexes [(btmgb)PtCl(2)], [(btmgb)PtCl(dmso)](+)[PtCl(3)(dmso)](-), and [(btmgb)PtCl(dmso)](+)[Cl(-)] were synthesized and characterized. In the [btmgbH](+) cation the proton is bound to only one N atom. In the other complexes, both imine N atoms are coordinated to the Pt(II), thus adopting a eta(2)-coordinational mode. The hpp(-) anion, which usually prefers a bridging binding mode in dinuclear complexes, is eta(2)-coordinated in the Pt(IV) complex [(eta(2)-hpp)(hppH)PtCl(2){N(H)C(O)CH(3)}], which is formed (in low yield) by reaction between cis-[(hppH)(2)PtCl(2)] and H(2)O(2) in CH(3)CN.  相似文献   

17.
1,2-Bis(trimethylsilyl)benzenes are key starting materials for the synthesis of benzyne precursors, Lewis acid catalysts, and certain luminophores. We have developed efficient, high-yield routes to functionalized 4-R-1,2-bis(trimethylsilyl)benzenes, starting from either 1,2-bis(trimethylsilyl)acetylene/5-bromopyran-2-one (2) or 1,2-bis(trimethylsilyl)benzene (1)/bis(pinacolato)diborane. In the first reaction, 5 (R = Br) is obtained through a cobalt-catalyzed Diels-Alder cycloaddition. The second reaction proceeds via iridium-mediated C-H activation and provides 8 (R = Bpin). Besides its use as a Suzuki reagent, compound 8 can be converted into 5 with CuBr(2) in i-PrOH/MeOH/H(2)O. Lithium-bromine exchange on 5, followed by the addition of Me(3)SnCl, gives 10 (R = SnMe(3)), which we have applied for Stille coupling reactions. A Pd-catalyzed C-C coupling reaction between 5 and 8 leads to the corresponding tetrasilylbiphenyl derivative. The bromo derivative 5 cleanly undergoes Suzuki reactions with electron-rich as well as electron-poor phenylboronic acids.  相似文献   

18.
Addition of 2-aminoethanethiol and 2-mercaptoethanol at both vinylsulfonyl groups of 1,2,4,5-tetrafluoro-3,6-bis(vinylsulfonyl)benzene occurs through the thiol group of the reagent and yields the corresponding 3,6-bis[2-(2-aminoethylthio)ethylsulfonyl] and 3,6-bis[2-(2-hydroxyethylthio)ethylsulfonyl] derivatives. The reaction of the title compound with 1,2-ethanedithiol leads to formation of only polymeric addition products.  相似文献   

19.
A series of highly emissive three-coordinate copper(I) complexes, (dtpb)Cu(I)X [X = Cl (1), Br (2), I (3); dtpb =1,2-bis(o-ditolylphosphino)benzene], were synthesized and investigated in prototype organic light-emitting diodes (OLEDs). 1-3 showed excellent photoluminescent performance in both degassed dichloromethane solutions [quantum yield (Φ) = 0.43-0.60; lifetime (τ) = 4.9-6.5 μs] and amorphous films (Φ = 0.57-0.71; τ = 3.2-6.1 μs). Conventional OLEDs containing 2 in the emitting layer exhibited bright green luminescence with a current efficiency of 65.3 cd/A and a maximum external quantum efficiency of 21.3%.  相似文献   

20.
Lee C  Lee J  Lee SW  Kang SO  Ko J 《Inorganic chemistry》2002,41(12):3084-3090
The 1,2-bis(chlorogermyl)- (1) and 1,2-bis(bromostannyl)carborane (2) have been prepared by the reaction of dilithio-o-carborane with Me(2)GeCl(2) and Me(2)SnBr(2), respectively. Compounds 1 and 2 are found to be good precursors for the synthesis of a variety of cyclization compounds. The Wurtz-type coupling reaction of 1 and 2 using sodium metal afforded the four-membered digerma compound 3 and five-membered tristanna compound 4, respectively. The salt elimination reactions of 1 and 2 using Li(2)N(t)Bu and Li(2)PC(6)H(5) afforded the cyclic products [structure: see text]. The 1,2-bis(dimethylgermyl)carborane 9 and 1,2-bis(dimethylstannyl)carborane 10 were prepared by the reaction of 1 and 2 with sodium cyanoborohydride. The reactions of 9 and 10 with Pd(PPh(3))(4) afforded the bis(germyl)palladium 12 and bis(stannyl)palladium 13 complexes, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号