首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The boronic acid‐functionalized core–shell polymer nanoparticles, poly(N,N‐methylenebisacrylamide‐co‐methacrylic acid)@4‐vinylphenylboronic acid (poly(MBA‐co‐MAA)@VPBA), were successfully synthesized for enriching glycosylated peptides. Such nanoparticles were composed of a hydrophilic polymer core prepared by distillation precipitation polymerization (DPP) and a boronic acid‐functionalized shell designed for capturing glycopeptides. Owing to the relatively large amount of residual vinyl groups introduced by DPP on the core surface, the VPBA monomer was coated with high efficiency, working as the shell. Moreover, the overall polymerization route, especially the use of DPP, made the synthesis of nanoparticles facile and time‐saving. With the poly(MBA‐co‐MAA)@VPBA nanoparticles, 18 glycopeptides from horseradish peroxidase (HRP) digest were captured and identified by MALDI‐TOF mass spectrometric analysis, relative to eight glycopeptides enriched by using commercially available meta‐aminophenylboronic acid agarose under the same conditions. When the concentration of the HRP digest was decreased to as low as 5 nmol, glycopeptides could still be selectively isolated by the prepared nanoparticles. Our results demonstrated that the synthetic poly(MBA‐co‐MAA)@VPBA nanoparticles might be a promising selective enrichment material for glycoproteome analysis.  相似文献   

2.
利用硅烷偶联剂引发法制备核壳结构金属铝纳米粒子(Al NPs)@聚合物, 并研究了聚合反应时间和单体浓度对核壳结构尺寸的影响. 首先合成了硅烷偶联引发剂{2-溴-2-甲基-[3-(三甲氧基硅基)丙基]丙酰胺}, 并通过在甲苯中回流的方法, 将其锚定在金属铝纳米粒子表面. 然后, 在粒子表面引发甲基丙烯酸甲酯的原子转移自由基聚合, 形成聚甲基丙烯酸甲酯(PMMA)壳层. 通过核磁共振波谱仪(NMR)和傅里叶变换红外光谱仪 (FTIR)证明了引发剂和PMMA的成功接枝. 透射电子显微镜(TEM)图像表明, PMMA改性后的金属铝纳米粒子的尺寸和形貌基本不变, 且被厚度约为15 nm聚合物壳层完整均匀地包覆. 此外, 利用动态光散射(DLS)进一步揭示了聚合时间和单体浓度对核壳结构水合直径(Dh)的影响, 发现延长聚合时间或增加单体浓度均可显著提高核壳结构尺寸.  相似文献   

3.
Ultraviolet‐absorbing nanoparticles (NPs) were prepared by emulsion co‐polymerization of the vinylic monomer 2‐(2′‐hydroxy‐5′‐methacryloxyethylphenyl)‐2H‐benzotriazole (Norbloc?, NB) with the crosslinking monomer divinylbenzene. The effect of total monomer, surfactant, crosslinker, and initiator concentrations on the size and size distribution of the formed NPs was elucidated. The NB monomer and the formed polyNB (PNB) NPs of 19 ± 2 nm were then incorporated into polypropylene (PP) films by melt‐compounding technique by using cast film extrusion. Increasing the PNB NP concentrations integrated within the PP films decreased their UV transmittance. Migration of the UV absorbing PNB NPs from the PP films was not observed during 3 years of storage at room temperature or while exposure to extreme conditions. Under the same conditions, a significant migration was observed for the NB monomer‐containing films. Overall, the PNB NP‐containing films are clear and transparent, although the haze was affected by the addition of NB and PNB NPs. Moreover, the films have good mechanical properties and UV‐blocking quality. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
A copper metal–organic framework nanoparticles (Cu‐MOF‐NPs) synthesized via simple technique. The prepared Cu‐MOF‐NPs nanoparticles were further characterized using 1H‐NMR, FE‐SEM/EDX and thermal study (DSC/TGA). The FE‐SEM/EDX, thermal analysis, and NMR spectrum data with the other analysis support the nano‐Cu‐MOF structure and the monomeric unit (n[Cu (AIP)2(APY)(H2O)2].4H2O) of Cu‐MOF‐NPs. The photoluminescence (PL) studies of triiodothyronine hormone (T3) based on the prepared Cu‐MOF‐NPs investigated. The results revealed that the Cu‐MOF‐NPs might be used as a biosensor in the determination of triiodothyronine hormone (T3) in biological fluids through a significant quenching of the photoluminescence intensity of Cu‐MOF‐NPs at excitation wavelength 492 nm. The calibration plot achieved over the concentration range 0.0–200.0 ng/dL T3 hormone with a correlation coefficient 0.996 and limit of detection (LOD) and quantification (LOQ) 0.198 and 0.60 ng/dL, respectively. The PL spectra are indicating that Cu‐MOF‐NPs has highly selective sensing properties for T3 hormone without interfering with other human many hormones types. This approach considered a promising analytical tool for early diagnosis of the cases of thyroid disease. The mechanism of quenching between the Cu‐MOF‐NPs, and T3 hormone studied. The mechanism was a dynamic type and obtained due to the energy transfer mechanism.  相似文献   

5.
A suitable approach to stabilize palladium nanoparticles (Pd NPs), with an average diameter of 3–4 nm, on magnetic polymer is described. A new magnetic polymer containing 4′‐(4‐hydroxyphenyl)‐2,2′:6′,2″‐terpyridine (HPTPy) ligand was prepared by the polymerization of itaconic acid (ITC) as a monomer and trimethylolpropane triacrylate (TMPTA) as a cross‐linker and fully characterized. Pd NPs embedded on the magnetic polymer were successfully applied in Suzuki–Miyaura and Mizoroki–Heck coupling reactions under low palladium loading conditions, and provided the corresponding products with excellent yields (up to 98%) and high catalytic activities (TOF up to 257 hr?1). Also, the catalyst can be easily separated and reused for at least consecutive five times with a small drop in catalytic activity.  相似文献   

6.
Stable translucent aqueous suspensions of azide‐functionalized cross‐linked nanoparticles (NPs), with diameters in the 15–20 nm range, were prepared using two synthetic approaches. Copolymerization of azidomethylstyrene (VBN3), styrene, and divinylbenzene in various oil‐in‐water microemulsions led to NPs with modulable azide contents (0.53–0.78 mmol/g) and surface over volume distributions. Surface modifications of reactive NPs bearing chlorobenzyl groups, produced by microemulsion copolymerization of vinylbenzylchloride, with sodium azide led to azido‐coated NPs with high densities of peripheral groups (0.13–0.45 mmol/g). It is shown that the nature of the surfactant used for the preparation of the microemulsion has an impact on the incorporation of VBN3 in the polymer particles as well as on the surface reaction yield. The azide‐functionalized NPs were used as clickable polymeric scaffolds for the grafting of sparingly water‐soluble dansyl and fluorescein derivatives through copper(I)‐catalyzed azide‐alkyne cycloaddition in water in the presence of surfactants as solubilizing agents to produce fluorescent NPs. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
Biofouling is very harmful in diverse industries. Copper nanoparticles (Cu NPs) possess excellent antifouling performances. In this study, in situ generation of Cu NPs on dopamine modified 304 stainless steel (SS) surface layer-by-layer in weak alkaline solution was reported. Field emission scanning electron microscope equipped with energy dispersive spectrometer, atomic force microscope, and X-ray photoelectron spectroscopy were utilized to analyze the surface morphology and chemical composition of the modified SS. The results demonstrated that the surface of SS was coated with polydopamine (PDA) and Cu NPs successfully. The robustness assay of the Cu NPs surface demonstrated that most Cu NPs had bound on the surface of the stainless steel firmly. Antimicrobial assays showed that modified surface possessed the ability of resistance of Escherichia coli and Staphylococcus aureus to an effectiveness of 92.1% and 80.4%, respectively. The presence of copper offers the coatings' excellent capability to inhibit effectively the adhesion of marine diatom Phaeodactylum tricornutum to an effectiveness of 98.15%. This strategy exhibited a realistic paradigm for further improving the antifouling performances of hull surfaces.  相似文献   

8.
The preparation of well‐defined polyisoprene‐grafted silica nanoparticles (PIP‐g‐SiO2 NPs) was investigated. Surface initiated reversible addition fragmentation chain transfer (SI‐RAFT) polymerization was used to polymerize isoprene from the surface of 15 nm silica NPs. A high temperature stable trithiocarbonate RAFT agent was anchored onto the surface of particles with controllable graft densities. The polymerization of isoprene mediated by silica anchored RAFT with different densities were investigated and compared to the polymerization mediated by free RAFT agents. The effects of different temperatures, initiators, and monomer feed ratios on the kinetics of the SI‐RAFT polymerization were also investigated. Using this technique, block copolymers of polyisoprene and polystyrene on the surface of silica particles were also prepared. The well‐defined synthesized PIP‐g‐SiO2 NPs were then mixed with a polyisoprene matrix which showed a good level of dispersion throughout the matrix. These tunable grafted particles have potential applications in the field of rubber nanocomposites. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1493–1501  相似文献   

9.
Photoinduced free radical polymerization of vinyl monomers by using semiconductor inorganic nanoparticles (NPs) is investigated. Zinc oxide and iron‐doped zinc oxide were used as photosensitive compounds to initiate the polymerization of acrylamide as a water‐soluble monomer in aqueous environment and methyl methacrylate as an oil‐soluble monomer in organic media under UV‐light irradiation. The method uses photochemically generated electrons and holes from the NPs to form initiating hydroxyl radicals in aqueous media, while tertiary amines and iodonium salt served as coinitiator in organic media. The initiation mechanism in organic media involves hydrogen abstraction or reduction processes via charge carriers, respectively. The kinetic of the polymerization in both environments was studied by means of a photo‐differential scanning calorimetry. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1500–1507  相似文献   

10.
Magnetic poly(N‐propargylacrylamide) (PPRAAm) microspheres were prepared by the precipitation polymerization of N‐propargylacrylamide (PRAAm) in a toluene/propan‐2‐ol medium in the presence of magnetic nanoparticles (oleic acid‐coated Fe3O4). The effects of several polymerization parameters, including the polarity of the medium, polymerization temperature, the concentration of monomer, and the amount of magnetite (Fe3O4) in the polymerization feed, were examined. The microspheres were characterized in terms of their morphology, size, particle‐size distribution, and iron content using transmission and scanning electron microscopies (TEM and SEM) and atomic absorption spectroscopy (AAS). A medium polarity was identified in which magnetic particles with a narrow size distribution were formed. As expected, oleic acid‐coated Fe3O4 nanoparticles contributed to the stabilization of the polymerized magnetic microspheres. Alkyne groups in magnetic PPRAAm microspheres were detected by infrared spectroscopy. Magnetic PPRAAm microspheres were successfully used as the anchor to enable a “click” reaction with an azido‐end‐functionalized model peptide (radiolabeled azidopentanoyl‐GGGRGDSGGGY(125I)‐NH2) and 4‐azidophenylalanine using a Cu(I)‐catalyzed 1,3‐dipolar azide‐alkyne cycloaddition reaction in water. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

11.
Aluminium‐based metal–organic framework (MOF) coatings on polystyrene bead surfaces were easily synthesized by reacting an intermediate metal hydroxide coating with an organic linker. Several different sizes of polystyrene beads were coated with aluminium metal hydroxide to construct Al@PS core–shell bead materials. The activated Al@PS core–shell beads were involved to make a homogenous MOF‐based layer in the presence of the organic linker. By using different sizes of the PS support the size of MOFs on the PS composites could be fine‐tuned under specific reaction conditions. MOF‐coated core–shell bead materials (Al‐1,4‐NDC@PS and MIL‐53(Al)@PS) were characterized using various analytical techniques. Al‐1,4‐NDC@PS and MIL‐53(Al)@PS were evaluated for solid‐phase microextraction (SPME) of hydrophobic polycyclic aromatic hydrocarbons (PAHs) and hydrophilic non‐steroidal anti‐inflammatory drugs (NSAIDs), respectively. Al‐1,4‐NDC@PS‐1000 displayed high extraction recoveries ranging from 79.2 % to 99.8 % in the SPME of PAHs. Meanwhile, MIL‐53(Al)@PS‐1000 showed 85.9–99.0 % extraction recoveries in the SPME of NSAIDs. These results show that the proposed approach holds potential to extract organic analytes on an industrial scale.  相似文献   

12.
The synthesis and pH‐sensing properties of fluorescent polymer nanoparticles (NPs) in the 20 nm diameter range with a sensitive dye covalently attached to the particle surface and a reference dye entrapped within the particle core are presented. Fluorescein‐functionalized NPs were readily obtained by conjugation of fluorescein isothiocyanate (FITC) to amine‐coated crosslinked polystyrene‐based nanoparticles prepared by microemulsion polymerization followed by postfunctionalization. This all water‐based method gave access to stable aqueous suspensions of pH‐sensing fluorescent NPs. The encapsulation of the insensitive reference fluorescent dye (1,9‐diphenylanthracene, DPA) was then conveniently achieved by soaking leading to dual fluorescent NPs containing about 20 DPA and 55 fluorescein, as deduced from spectroscopic analyses. This core‐shell type architecture maximizes the interactions of the sensing dye with the medium while protecting the reference dye. The variations of the ratio of the fluorescence emission intensities of the sensitive dye (fluorescein) to the reference dye (DPA) with pH show that the dual fluorescent NPs act as a ratiometric pH sensor with a measuring range between pH 4 and pH 8. This pH nanosensor was found to be fast, fully reversible, and robust without any leaching of dye over a long period of time. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6206–6213, 2008  相似文献   

13.
A protein imprinting approach for the synthesis of core–shell structure nanoparticles with a magnetic core and molecularly imprinted polymer (MIP) shell was developed using a simple distillation–precipitation polymerization method. In this work, Fe3O4 magnetic nanoparticles were first synthesized through a solvothermal method and then were conveniently surface‐modified with 3‐(methacryloyloxy)propyltrimethoxylsilane as anchor molecules to donate vinyl groups. Next a high‐density MIP shell was coated onto the surface of the magnetic nanoparticles by the copolymerization of functional monomer acrylamide (AAm), cross‐linking agent N,N′‐methylenebisacrylamide (MBA), the initiator azodiisobutyronitrile (AIBN), and protein in acetonitrile heated at reflux. The morphology, adsorption, and recognition properties of the magnetic molecularly imprinted nanoparticles were investigated by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), and rebinding experiments. The resulting MIP showed a high adsorption capacity (104.8 mg g?1) and specific recognition (imprinting factor=7.6) to lysozyme (Lyz). The as‐prepared Fe3O4@Lyz‐MIP nanoparticles with a mean diameter of 320 nm were coated with an MIP shell that was 20 nm thick, which enabled Fe3O4@Lyz‐MIP to easily reach adsorption equilibrium. The high magnetization saturation (40.35 emu g?1) endows the materials with the convenience of magnetic separation under an external magnetic field and allows them to be subsequently reused. Furthermore, Fe3O4@Lyz‐MIP could selectively extract a target protein from real egg‐white samples under an external magnetic field.  相似文献   

14.
In this article, magnetite nanoparticles (MNPs) coated with glycopolymer bearing glucose moieties were designed with optimal structural, colloidal, and magnetic properties for biomedical applications. MNPs with an average size of 17 ± 2 nm were synthesized by thermal decomposition process and then their surfaces were modified with active vinyl groups. Two different monomers were immobilized onto the surfaces: dopamine methacrylamide, a monomer with properties inspired on mussels adhesive capacity, or unprotected glycomonomer, 2‐{[(D ‐glucosamin‐2N‐yl)carbonyl]‐oxy}ethyl methacrylate. Afterward, the glycomonomer were polymerized at the interface of both vinyl functionalized MNPs by conventional radical polymerization. The resultant hybrid NPs were water dispersible presenting good stability in aqueous solution for long time periods. Moreover, the high density of carbohydrates at the surface of the magnetic NPs could confer targeting properties to the system as demonstrated by studies of their binding interactions with lectins, where the binding activity is higher as the glycopolymer content augments. The magnetic and magneto‐thermal properties of the synthesized hybrid NPs were evaluated. The magnetization curves reveal superparamagnetic features at 300 K, with high values of saturation magnetization. Furthermore, the hybrid glycoparticles show suitable heat dissipation power when exposed to alternating magnetic field conditions. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

15.
The temperature‐sensitive Cu(II) ion imprinted polymer (Cu(II)‐MIIP) materials were prepared via precipitation polymerization methods in supercritical carbon dioxide (scCO2) by using methanol as cosolvent. In the polymerization process, the polymerization mixture consists of copper ion, N‐isopropylacrylamide (functional monomer), ethylene glycol dimethacrylate (crosslinker), and 2,2′‐azobisisobutyronitrile (initiator). Non‐imprinted polymer particles were similarly prepared in the same way except for the presence of copper ion in the polymerization reaction. In this study, the characteristic of swelling/shrinking for Cu(II)‐MIIP in response to the change in temperature was investigated by scanning electron microscopy and photograph of swelling/shrinking for Cu(II)‐MIIP in deionized water. The above‐synthesized polymer particles were characterized by using Fourier transform infrared, thermo‐gravimetric analysis, and X‐ray diffraction techniques. Furthermore, the complete removal of the copper metal ion from the CuP was confirmed by atomic absorption spectroscopy. The selectivity adsorption of polymer materials was investigated from dilute aqueous solutions, and it was found to have an imprinting efficiency of 2.13 for Zn and Co ions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
A series of stable and translucent colored nanolatex, that is, colloidal aqueous suspensions of dye‐tagged polymer nanoparticles (NPs) in the 15‐ to 20‐nm diameter range, have been prepared by covalent attachment of azobenzene chromophores to the surface of reactive NPs. Primary crosslinked NPs bearing chlorobenzyl groups were produced by microemulsion copolymerization of styrene and vinylbenzylchloride. Amine‐functionalized NPs were obtained after a second functionalization step with polyamines (cyclam and polypropyleneimine dendrimers of first and third generations). Dye‐doped particles were obtained by reacting pyridylazo‐dimethylaminobenzene (PADA) with chlorobenzyl‐NPs and by reacting amine‐reactive dimethylaminoazobenzene dyes (DABsyl, DAB‐ITC) as well as Disperse Red 1 acrylate with polyamine‐coated NPs. Regardless the dye solubility, the grafting readily proceeded in aqueous suspensions at room temperature in the presence of a cationic surfactant without added solvent. Purple, red, and orange suspensions (maximum absorption around 550, 500, 430 nm), with dye loads ranging from 0.3 to 1.2 mmol/g, corresponding to 400–1800 azobenzene residues per NP, are obtained. The reported results indicate that functional polymer NPs, with remarkably accessible multiple anchoring sites, are useful building blocks. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3375–3386, 2008  相似文献   

17.
Yueqi Liu 《Talanta》2010,80(5):1713-967
Three monodispersed, molecularly imprinted polymers (MIPs) for cinchonidine (CD) have been synthesized by precipitation polymerization. MIP1 was prepared using methacrylic acid (MAA) as a functional monomer and divinylbenzene (DVB) as a cross-linker and MIP2 was prepared with further addition of 2-hydroxyethyl methacrylate (HEMA) as a co-monomer. For the preparation of MIP3, core-shell type MIP, monodispersed DVB homopolymers, which are prepared by precipitation polymerization, were used as a core and CD-imprinted MAA-DVB copolymer phases were coated onto the core. Three MIPs synthesized gave monodispersed, spherical beads in micrometer sizes. The binding characteristics and molecular recognition properties of MIP1-3 were examined by Scatchard analysis and chromatographic studies. The association constant of CD with MIP1 was the highest among MIPs prepared, while that with MIP3 was the lowest. The template molecule, CD, was more retained than its stereoisomer, cinchonine, on the three MIPs, and the stereoseparation factor of 38 was obtained with MIP3.  相似文献   

18.
We report the straightforward, time‐efficient synthesis of radical core–shell nanoparticles (NPs) by polymerization‐induced self‐assembly. A nitroxide‐containing hydrophilic macromolecular precursor was prepared by ring‐opening metathesis copolymerization of norbornenyl derivatives of TEMPO and oligoethylene glycol and was chain‐extended in situ with norbornene in ethanolic solution, leading to simultaneous amphiphilic block copolymer formation and self‐assembly. Without any intermediate purification from the monomers to the block copolymers, radical NPs with tunable diameters ranging from 10 to 110 nm are obtained within minutes at room temperature. The high activity of the radical NPs as chemoselective and homogeneous, yet readily recyclable catalysts is demonstrated through oxidation of a variety of alcohols and recovery by simple centrifugation. Furthermore, the NPs show biocompatibility and antioxidant activity in vitro.  相似文献   

19.
An isopropyl myristate (IPM) biocompatible oil and an IPM solution of dodecanethiol‐capped Ag nanoparticles (NPs, 4.5 nm) were used as hydrophobes to suppress the Ostwald ripening of monomer/hydrophobe miniemulsified droplets in a surfactant‐stabilized water phase. The formation of non‐IPM‐encapsulated nanospheres (48 nm) and IPM‐encapsulated nanocapsules (90 nm) were precisely controlled by using a water‐soluble and an oil‐soluble initiator, respectively, in the presence of a pure IPM as a hydrophobe in miniemulsion polymerization. Well‐defined PS nanospheres, on which surfaces were coated with Ag NPs (Ag/PS nanospheres, 65 nm), and nanocapsules encapsulating both NPs and IPM liquid phase (Ag‐IPM/PS nanocapsules, 115 nm) were made by replacing the hydrophobe from pure IPM with Ag/IPM solution. These nanostructures were characterized by transmission and scanning electron microscopes.

  相似文献   


20.
Monodisperse molecularly imprinted polymers for strychnine were prepared by precipitation polymerization and multistep swelling and polymerization, respectively. In precipitation polymerization, methacrylic acid and divinylbenzene were used as a functional monomer and crosslinker, respectively, while in multistep swelling and polymerization, methacrylic acid and ethylene glycol dimethacrylate were used as a functional monomer and crosslinker, respectively. The retention and molecular recognition properties of the molecularly imprinted polymers prepared by both methods for strychnine were evaluated using a mixture of sodium phosphate buffer and acetonitrile as a mobile phase by liquid chromatography. In addition to shape recognition, ionic and hydrophobic interactions could affect the retention of strychnine in low acetonitrile content. Furthermore, molecularly imprinted polymers prepared by both methods could selectively recognize strychnine among solutes tested. The retention factors and imprinting factors of strychnine on the molecularly imprinted polymer prepared by precipitation polymerization were 220 and 58, respectively, using 20 mM sodium phosphate buffer (pH 6.0)/acetonitrile (50:50, v/v) as a mobile phase, and those on the molecularly imprinted polymer prepared by multistep swelling and polymerization were 73 and 4.5. These results indicate that precipitation polymerization is suitable for the preparation of a molecularly imprinted polymer for strychnine. Furthermore, the molecularly imprinted polymer could be successfully applied for selective extraction of strychnine in nux‐vomica extract powder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号