首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
《电化学》2021,(2)
Spiro-OMeTAD是钙钛矿型太阳能电池中应用最广泛的空穴传输材料,它本身的空穴传输率很低,需要氧化之后才能满足高效率太阳能电池器件的要求。然而,Spiro-OMeTAD在空气中的氧化时间较长,同时空气中的水分会造成器件效率的下降以及器件质量不稳定等不良后果。基于此,我们通过一步法制备CsPbIBr_2无机钙钛矿太阳能电池,并将旋涂了Spiro-OMeTAD层的器件放在纯氧气中氧化,避免因水分导致的钙钛矿层分解。实验结果表明,氧气氧化后的器件最高效率为7.19%,高于空气中氧化的器件达到的最高效率6.29%,并且氧气氧化可以将Spiro-OMeTAD的氧化时间从18小时缩短到5小时。我们采用一系列电化学表征方法探讨了不同氧化条件下电池器件的性能差异.结果显示,纯氧气氧化Spiro-OMeTAD可以有效减低载流子复合,提高电荷传输。此外,我们采集了多个样本统计分析,发现采用氧气氧化的器件平均效率更高,器件质量更稳定,具有更好的可重复性。这种快速稳定的氧化方法为钙钛矿型太阳能电池的商业化开发提供了有效的思路。  相似文献   

2.
钙钛矿太阳能电池由于其高能量转换效率(最高报道认证效率为25.2%)、低成本和易于制造等特点,成为下一代光伏技术的关注焦点.虽然钙钛矿材料本身可以传导空穴,但其效率比较低.空穴传输材料的使用成为有效提取电荷和提高钙钛矿型太阳能电池效率的关键因素.总结了近期报道的低成本、高性能有机小分子空穴传输材料(效率大于19%),从螺环结构、噻吩衍生物以及其它结构进行介绍,并从合成策略和化学修饰等角度评估结构-性能的构效关系及其对器件效率和稳定性的影响,最后对有机小分子空穴传输材料的发展趋势进行了展望.  相似文献   

3.
张婧  何有军  闵杰 《物理化学学报》2018,34(11):1221-1238
有机-无机钙钛矿太阳能电池(PSCs)从2009年低于5%的能量转换效率到现在经过认证的超过22%的效率,成为科研热点和最有希望商业化的新型太阳能电池。在高性能的PSCs中,空穴传输材料是关键的一环,起到从钙钛矿活性层材料到对电极有效抽取和传输空穴的作用。本文在现有研究成果的基础上,对有机分子空穴传输材料在PSC中的应用进行总结,并强调分子材料结构对PSC器件性能(效率和稳定性)的影响。  相似文献   

4.
设计合成了三种以(甲氧基)三苯胺为给体(Donor,D),苯环为共轭π桥,羰基(或双氰基乙烯基)为受体(Acceptor,A)的D-π-A-π-D型有机小分子空穴传输材料1-T、1-OT和1-OTCN.对三个化合物的热稳定性、光物理以及电化学性质进行表征,并将它们作为空穴传输材料运用至钙钛矿太阳能电池中,研究其光伏特性.实验结果表明,通过引入具有不同给(吸)电子能力的基团,可对材料的光电性质进行有效调控.基于小分子空穴传输材料1-T、1-OT和1-OTCN的非掺杂反向钙钛矿太阳能电池器件光电转化效率(PCE)分别为13.0%、14.4%以及16.8%.其中,基于甲氧基和双氰基修饰的1-OTCN电池器件,由于空穴传输层与钙钛矿界面发生更有效的电荷跃迁和收集,电荷复合较少,因此器件性能最佳,1-OTCN的疏水性质使得其对应器件效率和水氧稳定性均优于常用空穴传输材料PEDOT:PSS(PCE:13.0%).  相似文献   

5.
有机-无机杂化钙钛矿型太阳能电池因其简单的制备工艺,低廉的制造成本,优异的光电转换效率,成为光伏领域的研究热点。钙钛矿光吸收材料具有消光系数高、载流子迁移率高、载流子寿命长、带隙可调控等优点。短短几年内,钙钛矿型太阳能电池的效率从最初的3.8%提高到22.1%。目前,为了获得稳定高效的钙钛矿型太阳能电池,主要有以下几个研究思路:新型器件结构设计;结构功能层的材料形貌设计;结构各功能层间的界面修饰;空穴传输材料的选择;对电极的选择。本文通过文献综述,在回顾了国内外研究者对钙钛矿型太阳能电池的研究历程的基础上,介绍了钙钛矿型太阳能电池的结构和工作原理,重点总结了电子传输层和钙钛矿层的制备工艺及优化,并讨论了钙钛矿型太阳能电池的稳定性以及展望了其商业化的前景。  相似文献   

6.
郭文明  钟敏 《无机化学学报》2017,33(7):1097-1118
有机-无机杂化钙钛矿型太阳能电池因其简单的制备工艺,低廉的制造成本,优异的光电转换效率,成为光伏领域的研究热点。钙钛矿光吸收材料具有消光系数高、载流子迁移率高、载流子寿命长、带隙可调控等优点。短短几年内,钙钛矿型太阳能电池的效率从最初的3.8%提高到22.1%。目前,为了获得稳定高效的钙钛矿型太阳能电池,主要有以下几个研究思路:新型器件结构设计;结构功能层的材料形貌设计;结构各功能层间的界面修饰;空穴传输材料的选择;对电极的选择。本文通过文献综述,在回顾了国内外研究者对钙钛矿型太阳能电池的研究历程的基础上,介绍了钙钛矿型太阳能电池的结构和工作原理,重点总结了电子传输层和钙钛矿层的制备工艺及优化,并讨论了钙钛矿型太阳能电池的稳定性以及展望了其商业化的前景。  相似文献   

7.
钙钛矿太阳能电池由于具有高的光电转换效率,简单的溶液加工工艺,较低的成本等优势因而拥有广阔的应用前景。有机小分子空穴传输层材料在钙钛矿太阳能电池中扮演着极其重要的角色。在本工作中,我们设计和合成了基于吡嗪为分子中心核,三苯胺为分枝的X型空穴传输层材料PT-TPA。与Si-OMeTPA对比,吡嗪的引入不仅不会影响其结晶性,并且能够改善其电荷转移特性和分子中心共平面性,从而显著提升了PT-TPA的空穴迁移率。在非掺杂的情况之下,基于PT-TPA空穴传输层的p-i-n型钙钛矿太阳能电池展现出17.52%的光电转换效率,与相同条件下基于Si-OMeTPA空穴传输层的器件相比,效率提高了近15%。  相似文献   

8.
卢岳  葛杨  隋曼龄 《物理化学学报》2022,38(5):2007088-86
随着光伏产业的不断发展,有机无机杂化钙钛矿太阳能电池的研发成为科学与工业界广泛关注的焦点。到目前为止,其光电转换效率已经提高到了25.2%,成为替代硅基太阳能电池的核心方案之一。然而,钙钛矿太阳能电池的稳定性较差,容易受到环境中氧气、水分、温度甚至光照的影响,这严重制约了其大规模推广与应用。大量科学研究表明,如何避免紫外辐照下有机无机杂化钙钛矿太阳能电池的性能衰减,对于提高钙钛矿太阳能电池的光照稳定性至关重要。然而到目前为止,仍然没有系统的工作来对紫外辐照下钙钛矿太阳能电池性能以及微结构演化过程进行详细的表征与分析。本文中,我们利用聚焦离子束-扫描电子显微分析(FIB-SEM)以及球差校正透射电子显微分析(TEM)等技术,全面地研究了紫外辐照过程中有机无机杂化钙钛矿太阳能电池性能变化规律以及电池微结构演化特征。实验结果表明,紫外辐照过程中太阳能电池内部会形成0.5–0.6 V的内建电场,钙钛矿中的I-离子在电场的驱动下向金属Au电极和空穴传输层2, 2’, 7, 7’-四[N, N-二(4-甲氧基苯基)氨基]-9, 9'-螺二芴(Spiro-OMeTAD)一侧迁移;随后,空穴传输层与金电极的界面处,碘离子与光生空穴一起与金电极发生反应,将金属态Au氧化成离子态Au+。而Au+离子则在内建电场的驱动下反向迁移穿过钙钛矿MAPbI3层,直接被SnO2和MAPbI3界面处的电子还原形成金属Au纳米团簇。除此之外,紫外辐照过程中钙钛矿太阳能电池性能降低的同时,往往伴随着Spiro-OMeTAD与钙钛矿界面处物质迁移、钙钛矿薄膜内晶界展宽以及Au纳米颗粒周围MAPbI3物相分解等现象。以上各种因素的协同作用,共同导致了紫外光照下有机无机杂化钙钛矿太阳能电池光电转换性能(PCE)、开路电压(Voc)以及短路电流(Jsc)等性能参数的急剧下降。  相似文献   

9.
介观太阳能电池(Mesoscopic Solar Cells)作为新一代太阳能电池的突出代表, 具有原材料来源丰富, 制备工艺简单, 光电转换效率高等优点, 从而具有广阔的应用前景. 本工作简要评述了全固态介观太阳能电池从染料敏化太阳能电池(Dye-sensitized solar cells)发展到钙钛矿太阳能电池(Perovskite solar cells)过程中新材料、新技术和新概念的研究进展. 1998年, Grätzel课题组首次将固态有机空穴传输材料spiro-OMeTAD应用到染料敏化太阳能电池中, 制备出全固态染料敏化太阳能电池, 虽然仅获得了0.74%的光电转换效率, 但是却使得全固态染料敏化太阳能电池迅速发展成为介观太阳能电池的重要研究方向. 2012年, Park与Grätzel课题组合作, 使用钙钛矿型吸光材料(CH3NH3)PbI3作为敏化剂, spiro-OMeTAD作为空穴收集层, 制备出光电转换效率达到9.7%的全固态介观太阳能电池, 又被称为钙钛矿太阳能电池. 自此, 基于钙钛矿材料的介观太阳能电池迅速成为太阳能电池领域的研究热点. 目前, 钙钛矿太阳能电池的最高公证效率已经达到20.1%. 钙钛矿太阳能电池作为介观太阳能电池商业化道路上里程碑式的突破, 在材料开发、界面优化以及器件稳定性方面的研究仍充满挑战, 也期待新的突破.  相似文献   

10.
近年来,有机无机杂化金属卤化物钙钛矿太阳能电池的光电转换效率从最初3.8%提升到现在的21.0%.快速的效率提升主要得益于钙钛矿材料本身的光电特性—适宜的直隙半导体禁带宽度、较低的激子束缚能、较高的摩尔消光系数、优良的载流子双极性扩散特性.然而,高效率钙钛矿太阳能电池的器件稳定性和迟滞效应现象仍未得到很好的改善,是当前急需要解决的挑战性难题.本文首先回顾了钙钛矿太阳能电池的发展历程和器件结构的演变,结合本课题组在反式p-i-n结构钙钛矿太阳能电池方面的研究进展,试图阐明一些由电池结构带来的本质性差异和一些设计实现钙钛矿太阳能电池高效率、高稳定性、消除迟滞效应的普遍规律.着重总结了基于聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)(PEDOT:PSS)基与NiO基两类p型空穴传输材料的反式结构钙钛矿电池方面的代表性研究进展.  相似文献   

11.
Lithium bis(trifluoromethanesulfonyl)imide (Li-TFSI) has been identified as the most used and effective p-dopant for hole transport layer (HTL) in perovskite solar cells (PSCs). However, the migration and agglomeration of Li-TFSI in HTL negatively impact PSCs performance and stability. Herein, we report an effective strategy for adding a liquid crystal organic small molecule (LQ) into Li-TFSI doped (2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamine)-9,9′- spirobifluorene (Spiro-OMeTAD) HTL. It was found that the introduction of LQ into Spiro-OMeTAD HTL can efficiently enhance the charge carrier extraction and transportation in device, which can strongly retard the charge carrier recombination in device. Consequently, the PSCs efficiency is significantly enhanced to 24.42 % (Spiro-OMeTAD+LQ) from 21.03 % (Spiro-OMeTAD). The chemical coordination between LQ and Li-TFSI can strongly confine Li+ ions migration and agglomeration of Li-TFSI, thus, achieving the enhanced device stability. Only a 9 % efficiency degradation is observed for un-encapsulated device prepared with Spiro-OMeTAD and LQ after 1700 h under air environment, while the efficiency drops by 30 % for the reference device. This work provides an effective strategy for improving the efficiency and stability of PSCs, and gives some important insights for understanding intrinsic hot carriers dynamics for perovskite-based optoelectronic devices.  相似文献   

12.
Nowadays, both n-i-p and p-i-n perovskite solar cells (PSCs) device structures are reported to give high performance with photo conversion efficiencies (PCEs) above 20%. The efficiency of the PSCs is fundementally determined by the charge selective contact materials. Hence, by introducing proper contact materials with good charge selectivity, one could potentially reduce interfacial charge recombination as well as increase device performance. In the past few years, copious charge selective contact materials have been proposed. Significant improvements in the corresponding devices were observed and the reported PCEs were close to that of classic Spiro-OMeTAD. This mini-review summarizes the state-of-the-art progress of typical electron/hole selective contact materials for efficient perovskite solar cells and an outlook to their development is made.  相似文献   

13.
Due to the low intrinsic hole mobility caused by the orthogonal conformation of two fluorene units in Spiro-OMeTAD which is a classic hole-transporting material (HTM) in perovskite solar cells (PSCs), Spiro-OMeTAD based PSCs generally can only obtain high performances through a sophisticated doping process with dopants/additives, which adds to the cost and complicacy of device fabrication, and also adversely affects the stability of PSC devices. Herein, a novel dispiro-based HTM, WH-1, is designed by cleverly replacing the central carbon atom of Spiro-OMeTAD with cyclohexane, and the spatial configuration of the HTM is changed from vertical orthogonality of the two fluorene units to a parallel arrangement, which is beneficial for the formation of a homogeneous and compact HTM film on the surface of the perovskite film, improvement of intermolecular electronic coupling and intrinsic hole mobility. WH-1 is obtained by two-step facile synthesis with a high yield from commercially available materials. WH-1 is used in PSCs as a dopant-free HTM, which is the first time that the dispiro-based molecule has been applied as a dopant-free HTM, and a power conversion efficiency (PCE) of 19.57% is obtained, rivaling Li-TFSI/t-BP doped Spiro-OMeTAD in PCE (20.29%), and showing obvious superior long-term stability.

A dispiro-based HTM with a parallel arrangement of two fluorenes was designed by replacing the central carbon atom of Spiro-OMeTAD with cyclohexane. The PCE of a PSC based on dopant-free WH-1 is 19.57%, rivaling that of doped Spiro-OMeTAD (20.29%).  相似文献   

14.
The conventional unstable and expensive hole transporting materials (HTM) has been replaced by cost effective modified carbon hole extraction layer. Herein, we demonstrated a new recipe toward air stable and waterproof modified carbon hole extraction layer for efficient perovskite solar cells (PSCs). The commercial available carbon ink modified with methylammonium lead iodide (MAI) has been used as hole extraction layer for ambipolar perovskite solar cells. The fabricated optimized perovskite solar cell having Glass/FTO/mp-TiO2/MAPbI3-xClx/carbon + MAI/Carbon configuration exhibited η = 13.87% power conversion efficiency (PCE) with open circuit voltage (VOC) 0.997 V, current density (JSC) = 21.41 mAcm?2 and fill factor (FF) 0.65. Furthermore, the air stability were tested at room temperature in open atmosphere. The water proof stability was tested under water flushing. Our results revealed that, although our carbon based devices show lower PCE (η = 13.87%) compared to spiro-MeOTAD HTM (η = 15%), the fabricated PSCs could even retain >90% after water exposure >20 times and ambient air stability more than 160 days. Further the large area device (>1 cm2) device shows 13.04% PCE with Jsc = 21.47 mAcm?2, VOC = 0.996 V and FF = 0.61. We have also demonstrated >13% efficiency for large area device (>1.1 cm2), demonstrating that the developed method is simple, cost effective and promising towards large area device fabrication. The developed methodology based on low cost carbon hole extraction layer will be helpful towards waterproof and air stable perovskite solar cells for large-area devices.  相似文献   

15.
Organic metal halide perovskite materials have excellent photoelectric properties, and the power conversion efficiency(PCE) of the perovskite solar cells(PSCs) has increased from 3.8% to more than 25%. In the development of PSCs, innovative architectures were being proposed constantly. However, the use of the electron transport layer(ETL) and hole transport layer(HTL) increases manufacturing costs and process complexity. Perovskite material has ambipolar charge transport characteristics, so it c...  相似文献   

16.
The intrinsic defects in perovskite film can serve as non-radiative recombination center to limit the performance and stability of metal halide perovskite solar cells (PSCs). The additive engineering in perovskite film is always applied to produce high-efficiency PSCs in recent years. Here, a typical donor-acceptor (D−A) structured aggregation-induced emission (AIE) molecule tetraphenylethene-2-dicyano-methylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran (TPE-TCF) was introduced into perovskite film. The D−A structure of TPE-TCF molecule provided additional charge transfer channels, contributing to transporting electron of TPE-TCF-based device. The cyano (C≡N) of TPE-TCF can interact with the uncoordinated Pb to from a relatively stable intermediate, PbI2⋅TPE-TCF, resulting in the slower crystal growth, reduced the defects at the grain boundaries and suppressed carrier recombination. As a consequence, the power conversion efficiency (PCE) of TPE-TCF-modified PSCs achieved a remarkably enhanced from 15.63 to 19.66 % with negligible hysteresis, which was prominent in methylammonium lead iodide-based devices fabricated under ambient condition. Furthermore, the PSCs modified by AIE molecule possessed an outstanding stability and maintain about 86 % of the initial PCE after 300 h storage in air at 25–35 °C with a high relative humidity (RH) of ≈85 %. This work suggests that incorporating AIE molecule into perovskite is a promising strategy for facilitating high-performance PSCs commercialization in ambient environment without glovebox.  相似文献   

17.
Electron transport materials (ETM) play an important role in the improvement of efficiency and stability for inverted perovskite solar cells (PSCs). This work reports an efficient ETM, named PDI‐C60, by the combination of perylene diimide (PDI) and fullerene. Compared to the traditional PCBM, this strategy endows PDI‐C60 with slightly shallower energy level and higher electron mobility. As a result, the device based on PDI‐C60 as electron transport layer (ETL) achieves high power conversion efficiency (PCE) of 18.6 %, which is significantly higher than those of the control devices of PCBM (16.6 %) and PDI (13.8 %). The high PCE of the PDI‐C60‐based device can be attributed to the more matching energy level with the perovskite, more efficient charge extraction, transport, and reduced recombination rate. To the best of our knowledge, the PCE of 18.6 % is the highest value in the PSCs using PDI derivatives as ETLs. Moreover, the device with PDI‐C60 as ETL exhibits better device stability due to the stronger hydrophobic properties of PDI‐C60. The strategy using the PDI/fullerene hybrid provides insights for future molecular design of the efficient ETM for the inverted PSCs.  相似文献   

18.
《印度化学会志》2023,100(5):101001
Perovskite solar cells (PSCs) have the potential to be highly efficient, low-cost next-generation solar cells. By raising open circuit voltage (Voc), the interfacial recombination kinetics can further improve device performance. In this study, we used simulation concept to elucidate the influence of using graphene as a surface passivation material in perovskite solar cells. Graphene works well as an interlayer to promote hole extraction and reduce interfacial recombination. In order to evaluate the effect of graphene in PSCs, the simulation was done in the SCAPS-1D framework to compare the performance of a device with and without graphene. Three interface layers were included to the model: TiO2/MAPbI3, MAPbI3/Graphene, and Graphene/Spiro-OMeTAD, in order to account for the impacts of interface defect density on device performance. The impacts of absorber doping concentration, absorber defect density, ETL doping concentration, HTL doping concentration, series resistance, and shunt resistance were also evaluated for the modelled PSC. Without any optimization, the control device with power conversion efficiency (PCE) of 20.677% was outperformed by the graphene-modified device with PCE of 20.911%. This difference is mostly due to the lower recombination losses and more effective suppression of interfacial non-radiative recombination. With optimization, the modified graphene-based device has a PCE of 26.667%. This result shows an enhancement of ∼1.28 times over that of the pristine graphene-based device. The outcomes have opened the way for the development of cost-effective and comparable state-of-the-art, high-efficiency perovskite solar cells with graphene interlayer by eliminating defects and managing non-radiative recombination.  相似文献   

19.
Lewis-base polymers have been widely utilized as additives to act as a template for the perovskite nucleation/crystal growth and passivate the under-coordinated Pb2+ sites.However,it is uncovered in this work that the polymer on the perovskite grain boundaries would significantly hinder the charge transport due to its low conductivity,which brings about free carrier recombination and photocurrent losses.To circumvent this issue while fully exploiting the benefits of polymers in passivating the trap states in perovskite,we incorporate highly conductive multiwall carbon nanotubes(CNTs) with Lewis-base polymers as coadditives in the perovskite film.Functionalizing the CNTs with-COOH group enables a selective hole-extraction and charge transport from perovskite to the hole transporting materials(HTM).By studying the charge transporting and recombination dynamics,we revealed the individual role of the polymer and CNTs in passivating the trap states and facilitating the charge transport,respectively.As a result,the perovskite solar cells(PSCs) with polymer-CNTs composites exhibit an impressive PCE of 21.7% for a small-area device(0.16 cm2) and 20.7% for a large-area device(1.0 cm2).Moreover,due to the superior mechanical flexibility of both polymer and CNTs,the polymer-CNTs composites incorporation in the perovskite film encourages the fabrication of flexible PSCs(f-PSCs) with an impressive PCE of 18.3%,and a strong mechanical durability by retaining 80%of the initial PCE after 1,000 times bending.In addition,we proved that the selection criteria of the polymers can be extended to other long-chain Lewis-base polymers,which opens new possibilities in design and synthesis of inexpensive material for this tactic towards the fabrication of high performance large-area PSCs and f-PSCs.  相似文献   

20.
Organic-inorganic lead halide perovskite solar cells have captured significant attention in recent years due to low processing costs and unprecedented development in power conversion efficiency (PCE). It has appeared from 2009 with PCE of 3.8% to being claimed more than 25.2% PCE in a very short span of time, showing their future prospective toward the fabrication of less expensive and stable solar cells. The incredible advancement in this technology encourages at one end, whereas several hurdles restricting its complete utilization for commercial purposes at another end. Although the selection of perovskite structure is limited with planar and mesoporous electron transport layers (ETLs), but identification of appropriate ETLs necessitates excellent effort to improve the surface morphology of absorber and obtain enhanced PCE with higher stability. In the present review, we have investigated various inorganic-organic ETLs with different device configurations of PSCs, primarily focusing on crystallization and morphology control techniques of ETL thin films. Numerous strategies such as surface functionalization, doping, and addition of interfacial layer are adopted for ETLs, and their effect on device efficiency, performance, and hysteresis is also discussed in detail. Additionally, designs of PSCs with different device configurations are discussed as well, providing future guidelines for significant progress in PSCs structure with different ETLs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号