首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
乙醇在新型Mo/C催化剂上的气相羰基化反应   总被引:1,自引:0,他引:1  
何红运  彭峰 《催化学报》2000,21(5):391-392
The carbonylation of alcohol to acid or ester is an important process in the chemical industry. The Monsanto process for acetic acid via the homoge neous carbonylation of methanol is an example of the largest scale commercial application of this route[1].Recently, ethanol carbonylation for manufacturing propionic acid and ethyl propionate became an at tractive approach, and many research efforts were made for an appropriate catalyst to carry out the va por phase carbonylation under atmospheric pres sure[2~4]. Although an iodide-promoted Ni/C cata lyst is found to exhibit satisfactory activity and se lectivity for the vapor phase carbonylation of ethanol, it is affected by the disadvantages associat ed with a highly corrosive reaction medium and dif ficult product separation owing to the use of ethyl iodide as promoter. There has been little success in finding heterogeneous or homogeneous catalyst that can operate effectively without a halide promoter[5].  相似文献   

2.
A straightforward and general method has been developed for the synthesis of C5-unsubstitiuted 1,4-dihydropyridines by a reaction using dimedone, acetophenone, aromatic aldehydes, and ammonium acetate in the presence of a catalytic amount of Co nanoparticles as a heterogeneous and eco-friendly catalyst with high catalytic activity at room temperature under solvent-free conditions. This catalyst is easily separated by magnetic devices and can be reused without any apparent loss of activity for the reaction. In addition, it is very interesting that when using Co nanoparticles as a catalyst, spatially-hindered aldehydes such as 2-methoxy-, 2-fluoro-, and 2-chloro-aldehydes are suitable for this reaction.  相似文献   

3.
正Nowadays, the main barrier which restricts the applications of integrated photonics for construction of optical diodes or isolators in photonic integrated circuits is the effective asymmetric photon transport. Accordingly, a series of photonic schemes have been developed to break this conundrum[1,2]. On the other hand, exciton polariton (EP) formed through the strong coupling between photons and exitons can propagate along the waveguide, which can therefore provide schemes to manipulate photons at microscale [3]. The electron/hole characteristics of EP expand the functions of integrated photonic devices, but unfortunately, the overall  相似文献   

4.
1 INTRODUCTION Resorcin[4]arene is a cyclic tetramer and can be easily obtained by acid-catalyzed condensation of resorcinol with a variety of aldehydes. The all-cis isomer with crown C4v symmetry is mostly isolated by means of alkyl aldehydes[1]. They have been used as starting materials for the synthesis of cavitands, velc-rands, and even more complex compounds like carce-rands, hemicarceracnds, and holands[2~4]. Of the ob-vious places for the chemical modification of reso-rcin[4]arene…  相似文献   

5.
<正>Optical waveguide, a physical structure that guides electromagnetic waves in the optical spectrum, is the key elements of photonic devices that perform guiding, coupling, switching, splitting, multiplexing and demultiplexing of optical signals [1]. In general, an optical waveguide is tuned by electrical field through a two-terminal diode [1]. Such integration was widely used in current photonic devices, but restricts its potentials in tiny optical chips for bio/medical  相似文献   

6.
When DCTA is used as the titrant,benzilic acid is a specific masking agent for Ti (IV).Using the DCTA-benzilic acid masicing method and spectrophotometric end point,90 ppb of Ti can be [selectively titrated.Micro-quantities of Ti in quartz samples can be accurately titrated without prior seperation.We have found that malonic acid is a specific masking agent for Al.When it is used simultaneously with benzilic acid,Ti and Al or Ti,Al and Fe (II) can be titrated stepwise.  相似文献   

7.
傅强 《高分子科学》2004,(6):559-566
INTRODUCTIONPolyurethanes (PU) have been widely used for manufacturing medical devices because of their excellentmechanical properties and moderate biocompatibility[1]. Although polyurethanes used in applications requiringall of the above properties have been successful for short-term use, the problems of long-term thromboresistanceand biostability in a biological environment still remain unsolved[2,3]. A legitimate approach to improving theproperties of polyurethanes is introduction of f…  相似文献   

8.
1 INTRODUCTION Paeonol, 2-hydroxyl-4-methoxyacetophenone, is one ofthe main components of Moutan Cortex. It is a traditionalChinese medicine with analgesic, sedative, antiallergic,antioxidative, antinflammatory and antimicrobial proper-ties and used as a remedy for cardiovascular and femalegenital diseases[1~3]. Moreover, it is also a valuableinartificial spicery and can be widely used in domesticchemistry[4]. But the nature of water insolubility and vola-tility makes it difficult for…  相似文献   

9.
<正>The generation of stretchable conductors is a mandatory precondition for the next-generation electronic devices including flexible, wearable electronics, smart skins and bioinspired devices [1–4]. This new class of electronic materials takes up external mechanical deformations and maintains structural integrity and electronic performance throughout bending, folding and stretching processes. Al-  相似文献   

10.
A variety of carbonyl compounds can be converted into oximes efficiently and conveniently in a novel ionic liquid/water bi-phasic system in the presence of sodium bicarbonate at ambient temperature. The ionic liquid 1-butyl-3-methyl imidazolium hexafluorophosphate [bmim]PF6 is immiscible with water or diethyl ether and can be easily recycled for reuse without noticeable droping in activity after separation of the products. The protocol is rapid, the yields are excellent, the method is simple and the ionic liquid can be reused.  相似文献   

11.
《Analytical letters》2012,45(14):2747-2757
Abstract

A novel functional electrode was obtained by implanting NH2 + into ITO film (NH2/ITO) for the first time. The NH2/ITO surface showed a better affinity to gold nanoparticles than bare ITO. Gold nanoparticles were deposited on the surface of NH2/ITO electrode (Au/NH2/ITO). The Au/NH2/ITO and NH2/ITO electrodes were used to observe the electrochemical behavior of Hemoglobin (Hb) immobilized on the electrodes surfaces. The peak current value of Hb immobilized on NH2/ITO increased compared with on bare ITO while peak current value of Hb immobilized on Au/NH2/ITO increased compared with on Au/ITO. Linkage between the ‐NH2 implanted into the ITO film and the ‐COOH of Hb was thought to be the reason for the increase of active Hb coverage on NH2/ITO compared with bare ITO. Increase of active Hb coverage on Au/NH2/ITO compare with Au/ITO was attributed to the different amount of gold nanoparticles deposited. Results showed the novel NH2/ITO and Au/NH2/ITO electrodes exhibited good stability, reproducibility besides selectivity and sensitivity. The electrode process of Hb immobilized on Au/NH2/ITO was quasi‐reversible with adsorption. The electrode reaction rate constant ks and other related constants were determined. X‐ray photoelectron spectroscopy (XPS), field‐emission scanning electron microscopy (FE‐SEM), and impedance spectra were used to characterize the different surfaces.  相似文献   

12.
A novel H2O2 amperometric biosensor based on the electrodeposition of gold nanoparticles (AuNPs) and CdS quantum dots (CdS QDs) onto a carbon paste electrode (CPE) and immobilizing hemoglobin (Hb) with ionic liquid (IL), is presented in this article. The modification process of the electrode was monitored by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Due to synergistic effects of AuNPs, CdS QDs and IL, the biosensor exhibited high stability and good bioelectrocatalytic ability to H2O2 with a linear concentration range from 10 to 750 µM and a detection limit of 4.35 µM (S/N=3).  相似文献   

13.
A sensitive hydrogen peroxide (H2O2) biosensor was developed based on a reduced graphene oxide|carbon ceramic electrode (RGO|CCE) modified with cadmium sulfide‐hemoglobin (CdS‐Hb). The electron transfer kinetics of Hb were promoted due to the synergetic function of RGO and CdS nanoparticles. The transfer coefficient (α) and the heterogeneous electron transfer rate constant (ks) were calculated to be 0.54 and 2.6 s?1, respectively, indicating a great facilitation achieved in the electron transfer between Hb and the electrode surface. The biosensor showed a good linear response to the reduction of H2O2 over the concentration range of 2–240 µM with a detection limit of 0.24 µM (S/N=3) and a sensitivity of 1.056 µA µM?1 cm?2. The high surface coverage of the CdS‐Hb modified RGO|CCE (1.04×10?8 mol cm?2) and a smaller value of the apparent Michaelis? Menten constant (0.24 mM) confirmed excellent loading of Hb and high affinity of the biosensor for hydrogen peroxide.  相似文献   

14.
A novel method for preparation of hydrogen peroxide biosensor was presented based on immobilization of hemoglobin (Hb) on carbon‐coated iron nanoparticles (CIN). CIN was firstly dispersed in a chitosan solution and cast onto a glassy carbon electrode to form a CIN/chitosan composite film modified electrode. Hb was then immobilized onto the composite film with the cross‐linking of glutaraldehyde. The immobilized Hb displayed a pair of stable and quasireversible redox peaks and excellent electrocatalytic reduction of hydrogen peroxide (H2O2), which leading to an unmediated biosensor for H2O2. The electrocatalytic response exhibited a linear dependence on H2O2 concentration in a wide range from 3.1 μM to 4.0 mM with a detection limit of 1.2 μM (S/N=3). The designed biosensor exhibited acceptable stability, long‐term life and good reproducibility.  相似文献   

15.
A nanobiocompatible composite containing hemoglobin (Hb), ZnO nanoparticles (nano‐ZnO) and ionic liquid 1‐butyl‐3‐methylimidazolium hexafluorophosphate (BMIMPF6) was fabricated and further modified on the glassy carbon electrode (GCE). The electrochemical behaviours of Hb in the composite film were carefully studied and a pair of quasi‐reversible redox peaks appeared in pH 7.0 phosphate buffer solution, which was attributed to the electrode reaction of Hb heme Fe(III)/Fe(II) redox couple. The presences of nano‐ZnO and BMIMPF6 in the film can retain the bioactivity of Hb and greatly enhance the direct electron transfer of Hb. The immobilized Hb showed high stability and good electrocatalytic ability to the reduction of hydrogen peroxide and O2.  相似文献   

16.
In this paper a carbon ionic liquid electrode (CILE) was fabricated by using a room temperature ionic liquid of 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6) as binder. By using the CILE as basal electrode, the hemoglobin (Hb) molecule was immobilized on the surface of CILE with a sodium alginate (SA) hydrogel and SiO2 nanoparticles organic-inorganic composite material. The direct electrochemical behaviors of Hb in the bionanocomposite film were further studied in a pH 7.0 Britton-Robinson (B-R) buffer solution. A pair of well-defined quasi-reversible cyclic voltammetric peaks of Hb was obtained on SA/nano-SiO2/Hb/CILE with the formal potential (E0’) at -0.355 V (vs. SCE), which was the characteristic of heme Fe(III)/Fe(II) redox couples. The formal potential of Hb Fe(III)/Fe(II) couple shifted negatively with increasing pH of solution with a slope of -45.2 mV/pH, which indicated that a one electron transfer accompanied with one proton transportation. The immobilized Hb showed good electrocatalytic manner to the reduction of trichloroacetic acid (TCA).  相似文献   

17.
A novel electrode was prepared by implanting NH2 + into an ITO film (NH2/ITO). Gold nanoparticles were deposited on the surface of NH2/ITO electrode. The NH2/ITO and Au/NH2/ITO electrodes were used to determine hemoglobin (Hb) immobilized on the electrodes surfaces. The relationship of the reductive peak current value of Hb among different electrodes was: Hb/ITO:Hb/Au/ITO:Hb/NH2/ITO:Hb/Au/NH2/ITO=1:1.5:2:4. The linkage between the –NH2 implanted into ITO film and the –COOH of Hb was recognized to be the reason for the increase of active Hb coverage on NH2/ITO electrode compared with the ITO electrode. Increase of active Hb coverage on Au/NH2/ITO compared with Au/ITO was attributed to the different amount of gold nanoparticles deposited. The determination of Hb at an Au/NH2/ITO electrode was optimized. Calibration curve was obtained over the range of 1.0 × 10−8 – 1.0 × 10−6 mol · L−1 with a detection limit of 1.0 × 10−8 mol · L−1. Results showed that the novel NH2/ITO and Au/NH2/ITO electrodes exhibited good stability, reproducibility besides better electrochemical performance. Correspondence: Jing Bo Hu, Department of Chemistry, Beijing Normal University, Beijing 100875, China  相似文献   

18.
We have studied the trans-membrane electron transfer in human red blood cells (RBCs) immobilized in a chitosan film on a glassy carbon electrode (GCE). Electron transfer results from the presence of hemoglobin (Hb) in the RBCs. The electron transfer rate (k s) of Hb in RBCs is 0.42 s?1, and <1.13 s?1 for Hb directly immobilized in the chitosan film. Only Hb molecules in RBCs that are closest to the plasma membrane and the surface of the electrode can undergo electron transfer to the electrode. The immobilized RBCs displayed sensitive electrocatalytic response to oxygen and hydrogen peroxide. It is believed that this cellular biosensor is of potential significance in studies on the physiological status of RBCs based on observing their electron transfer on the modified electrode.
The transmembrane electron transfer rate of Hb in RBCs is slower than hemoglobin molecules directly immobilized on the chitosan film. Only those hemoglobin in RBCs closest to the plasma membrane and electrode could exchange electrons with the electrode. The immobilized RBCs showed sensitive electrocatalytic response to O2 and H2O2.  相似文献   

19.
An unmediated hydrogen peroxide (H2O2) biosensor was prepared by co‐immobilizing hemoglobin (Hb) with platinum nanoparticles enhanced poly(chloromethyl thiirane) cross‐linked chitosan (CCCS‐PNs) hybrid film. CCCS could provide a biocompatible microenvironment for Hb and PNs could accelerate the electron transfer between Hb and the electrode. Spectroscopic analysis indicated that the immobilized Hb could maintain its native structure in the CCCS‐PNs hybrid film. Entrapped Hb exhibited direct electrochemistry for its heme Fe(III)/Fe(II) redox couples at ?0.396 V in the CCCS‐PNs hybrid film, as well as peroxidase‐like activity to the reduction of hydrogen peroxide without the aid of an electron mediator.  相似文献   

20.
The direct electron transfer between hemoglobin (Hb) and the underlying glassy carbon electrode (GCE) can be readily achieved via a high biocompatible composite system based on biopolymer chitosan (CHT) and inorganic CaCO3 nanoparticles (nano-CaCO3). Cyclic voltammetry of Hb-CHT/nano-CaCO3/GCE showed a pair of stable and quasi-reversible peaks for HbFe(III)/Fe(II) redox couple in pH 7.0 buffer. The electrochemical reaction of Hb immobilized in CHT/nano-CaCO3 composite matrix exhibited a surface-controlled process accompanied by electron and proton transfer. The electron transfer rate constant was estimated to be 1.8 s−1. This modified electrode showed a high thermal stability up to 60 °C. The apparent Michaelis–Menten constant was calculated to be 7.5 × 10−4 M, indicating a high catalytic activity of the immobilized Hb toward H2O2. The interaction between Hb and this nano-hybrid material was also investigated using FT-IR and UV–vis spectroscopy, indicating that Hb retained its native structure in this hybrid matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号