首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
New conjugated polymeric nanochannels were prepared via photopolymerisation and core extraction of star-shaped supramolecular liquid crystals formed by simple hydrogen bonding between a phloroglucinol core and pyridine derivatives containing two different photoreactive groups. The polymerisable supramolecular liquid crystal exhibited a discotic columnar mesophase. Photopolymerisation of supramolecular liquid crystalline monomer provided cross-linked conjugated polymeric columns in which the diacetylene and acrylate moieties were selectively polymerised along the vertical and horizontal axes, respectively. Chemical treatment of the cross-linked conjugated columns with sodium hydroxide resulted in the removal of the phloroglucinol core to produce the cross-linked conjugated polymeric nanochannels with an estimated effective pore diameter of about 1 nm. The controlled methodology in the present study can be used to design and fabricate conjugated nanoporous organic materials with intriguing ordered structures.  相似文献   

2.
The synthesis, structural, and retrostructural analysis of two libraries containing 16 first and second generation C(3)-symmetric self-assembling dendrimers based on dendrons connected at their apex via trisesters and trisamides of 1,3,5-benzenetricarboxylic acid is reported. A combination of X-ray diffraction and CD/UV analysis methods demonstrated that their C(3)-symmetry modulates different degrees of packing on the periphery of supramolecular structures that are responsible for the formation of chiral helical supramolecular columns and spheres self-organizable in a diversity of three-dimensional (3D) columnar, tetragonal, and cubic lattices. Two of these periodic arrays, a 3D columnar hexagonal superlattice and a 3D columnar simple orthorhombic chiral lattice with P222(1) symmetry, are unprecedented for supramolecular dendrimers. A thermal-reversible inversion of chirality was discovered in helical supramolecular columns. This inversion is induced, on heating, by the change in symmetry from a 3D columnar simple orthorhombic chiral lattice to a 3D columnar hexagonal array and, on cooling, by the change in symmetry from a 2D hexagonal to a 2D centered rectangular lattice, both exhibiting intracolumnar order. A first-order transition from coupled columns with long helical pitch, to weakly or uncorrelated columns with short helical pitch that generates a molecular rotator, was also discovered. The torsion angles of the molecular rotator are proportional to the change in temperature, and this effect is amplified in the case of the C(3)-symmetric trisamide supramolecular dendrimers forming H-bonds along their column. The structural changes reported here can be used to design complex functions based on helical supramolecular dendrimers with different degree of packing on their periphery.  相似文献   

3.
A new perylene bisimide (PBI) dye self‐assembles through hydrogen bonds and π–π interactions into J‐aggregates that in turn self‐organize into liquid‐crystalline (LC) columnar hexagonal domains. The PBI cores are organized with the transition dipole moments parallel to the columnar axis, which is an unprecedented structural organization in π‐conjugated columnar liquid crystals. Middle and wide‐angle X‐ray analyses reveal a helical structure consisting of three self‐assembled hydrogen‐bonded PBI strands that constitute a single column of the columnar hexagonal phase. This remarkable assembly mode for columnar liquid crystals may afford new anisotropic LC materials for applications in photonics.  相似文献   

4.
Semifluorinated first-generation self-assembling dendrons attached via a flexible spacer to electron-donor molecules induce pi-stacking of the donors in the center of a supramolecular helical pyramidal column. These helical pyramidal columns self-organize in various columnar liquid crystal phases that mediate self-processing of large single crystal liquid crystal domains of columns and self-repair their intracolumnar structural defects. In addition, all supramolecular columns exhibit a columnar phase at lower temperatures that maintains the helical pyramidal columnar supramolecular structure and displays higher intracolumnar order than that in the liquid crystals phases. The results described here demonstrate the universality of this concept, the power of the fluorous phase or the fluorophobic effect in self-assembly and the unexpected generality of pyramidal liquid crystals.  相似文献   

5.
Columnar supramolecular phases with polarization along the columnar axis have potential for the development of ultrahigh‐density memories as every single column might function as a memory element. By investigating structure and disorder for four columnar benzene‐1,3,5‐trisamides by total X‐ray scattering and DFT calculations, we demonstrate that the column orientation, and thus the columnar dipole moment, is receptive to geometric frustration if the columns aggregate in a hexagonal rod packing. The frustration suppresses conventional antiferroelectric order and heightens the sensitivity towards collective intercolumnar packing effects. The latter finding allows for the building up of mesoscale domains with spontaneous polarization. Our results suggest how the complex interplay between steric and electrostatic interactions is influenced by a straightforward chemical design of the molecular synthons to create spontaneous polarization and to adjust mesoscale domain size.  相似文献   

6.
The synthesis of ten benzyl ether based self-assembling monodendrons containing benzo[15]crown-5 at their focal point is presented. These dendritic building blocks self-assemble either directly or via complexation with NaOTf in two-dimensional smectic B, smectic A, and p6mm hexagonal columnar (Phi(h)) and three-dimensional Pm3n cubic lattices. Retrostructural analysis of these lattices and of the lattices generated from the same monodendrons containing various other functional groups at their focal point by X-ray diffraction experiments provided for the first time a correlation between the molecular structure and the shape of the monodendron, the shape of the supramolecular dendrimer and the symmetry of the lattice. It has been shown that complexation with NaOTf provides the following five different trends: a) stabilization of the three-dimensional Pm3n cubic lattice self-organized from spherical dendrimers that are self-assembled from conic monodendrons; b) stabilization of the two-dimensional S(A) phase generated from parallel-piped monodendrons; c) no effect on the stability of the two-dimensional S(B) phase generated from parallel-piped monodendrons; d) stabilization of the two-dimensional p6mm hexagonal columnar phase self-organized from cylindrical supramolecular dendrimers that are self-assembled from tapered monodendrons; and e) destabilization of the two-dimensional p6mm hexagonal columnar phase self-organized from cylindrical supramolecular dendrimers self-assembled from half-disc monodendrons. Mechanisms of NaOTf mediated self-assembly processes were suggested. These monodendritic crown ethers and their NaOTf complexes provide the largest diversity of liquid crystalline phases encountered so far in any library of supramolecular dendrimers.  相似文献   

7.
We discuss the different transitions from hexagonal to lower symmetry phases which result from a molecular tilt inside the columns. Several orientational structures are explained and others are predicted. Our model also applies to other physical phenomena, in particular the elliptical deformation of columnar aggregates in lyotropic liquid crystals  相似文献   

8.
Two series of polyphilic molecules composed of a rigid and linear p-terphenyl core, terminated at both ends with polar glycerol groups capable of hydrogen bonding, and two branched swallow tail-type lateral chains, composed of a fluorinated and a nonfluorinated branch or two fluorinated branches, were synthesized and investigated by differential scanning calorimetry, polarizing microscopy, and X-ray diffraction (XRD) with respect to their self-assembly in thermotropic liquid crystalline (LC) phases. Hexagonal columnar phases were formed by all molecules, at least at the highest temperature. In these phases the columns are composed of a core of aromatic rods and an aliphatic shell. The aromatic rods form bundles which are rotationally averaged and lie parallel to the column long axis. This unique organization is proven by different optical and XRD methods. The aromatic and glycerol groups inside the rod bundles are segregated into alternating segments. Depending on temperature and molecular structure, long-range intercolumnar correlation of this periodicity could take place, leading to a 3D-ordered LC phase with rhombohedral R ?3m symmetry. The bundles are embedded in the matrix of the lateral chains, which is divided into fluoroalkyl- and aliphatic-rich regions. In the 2D columnar phase the fluorinated regions take the form of either straight columns running along the edges of the hexagonal Voronoi cells or, for compounds with a higher degree of fluorination, fuse to a hexagonal honeycomb enclosing the aromatic cores. In the R ?3m phase the fluorine-rich chains are preferentially found along right- and left-handed helices wound around the 3(1) screw axes between the main aromatic columns.  相似文献   

9.
选取3种不同结构的苄醚型树枝状分子为分枝,以N-乙酰氨基葡萄糖为内核,合成出一类树枝化碳水化物;利用DSC、热台偏光显微镜、XRD和CD/UV光谱等手段研究该类化合物的液晶性,并命名为树状碳水化合物液晶。研究表明,连接有楔形树枝状单元的化合物形成手性柱状六方相或者向列相,连接有锥形树枝状单元的化合物未能如预期形成立方相,而仍然形成手性柱状六方相.超分子手性很可能源于树枝状单元与糖内核的协同自组装,使得树状分子沿着柱轴螺旋式堆砌;而糖环内核则对超分子柱的手性起调控作用,从而避免了外消旋的发生.该类化合物为研究碳水化合物诱导手性超分子聚集体提供了新的思路.  相似文献   

10.
Poly(ethylene oxide)-block-poly(l-lysine) (PEO-PLL) was complexed with an amphiphilic hexa-peri-hexabenzocoronene (HBC). This produced a thermotropic liquid crystalline material (PEO-PLL-HBC), which was investigated by FTIR spectroscopy and differential scanning calorimetry as well as by wide- and small-angle X-ray scattering. It was found that the poly(l-lysine) blocks form an alpha-helical secondary structure. Each helix is surrounded symmetrically by six discotic columns of HBC, which gives an alpha-helical-within-discotic column structural entity. The dense packing of these entities produces hexagonal sublattices (formed by the columns) in the frame of a two-dimensional hexagonal lattice (formed by the helices). An order-order transition from a columnar structure Col1 to Col2 was found at 54 degrees C. The unit cell constants are 5.75 nm (Col1) and 6.60 nm (Col2). The larger unit cell size of Col2 was explained by a higher intracolumnar order of the latter in which the packing distance of the disklike HBC cores is well-defined (0.353 nm). PEO-PLL-HBC combines essential features of liquid crystals with a basic structural element of proteins into a single material.  相似文献   

11.
Star-shaped mesogens with a phloroglucinol or a trimesic acid core and oligobenzoate arms with up to five repeating units have been synthesised. These non-conventional mesogens form various columnar mesophases over a broad temperature range. The liquid-crystal phases were characterised by optical microscopy, differential scanning calorimetry, X-ray diffraction, dilatometry and solid-state NMR spectroscopy. In addition to the high-temperature hexagonal columnar phases, the columnar self-assemblies undulate upon cooling and consequently form higher-ordered body-centred orthorhombic columnar 3D structures. A model of E-shaped folded conformers helically displaced along the columns is proposed. Helical preorganisation in the hexagonal phase precedes the transition to the low-temperature phases. Space filling and nano-segregation compete in the self-organisation process, thus aliphatic chains and the polar oligobenzoate scaffold are not perfectly separated in these star-shaped mesogens.  相似文献   

12.
We have prepared two types of one-dimensional ion-conductive polymer films containing ion nanochannels that are both perpendicular and parallel to the film surface. These films have been obtained by photopolymerization of aligned columnar liquid crystals of a fan-shaped imidazolium salt having acrylate groups at the periphery. In the columnar structure, the ionic part self-assembles into the inner part of the column. The column is oriented macroscopically in two directions by different methods: orientation perpendicular to the modified surfaces of glass and indium tin oxide with 3-(aminopropyl)triethoxysilane and orientation parallel to a glass surface by mechanical shearing. Ionic conductivities have been measured for the films with columnar orientation vertical and parallel to the surface. Anisotropic ionic conductivities are observed for the oriented films fixed by photopolymerization. The ionic conductivities parallel to the columnar axis are higher than those perpendicular to the columnar axis because the lipophilic part functions as an ion-insulating part. The film with the columns oriented vertically to the surface shows an anisotropy of ionic conductivities higher than that of the film with the columns aligned parallel to the surface.  相似文献   

13.
The polycatenar bent-shaped molecules are able to form columnar phases with column stratum built of few molecules, arranged in coplanar or conelike geometry. In the latter case, the phase becomes axially polar, with electric spontaneous polarization reorientable in the electric field by flipping the cone axis. The phase is antiferroelectric; in the plane perpendicular to columns, the ferroelectric hexagonal order exists, but the columns are broken along the z direction and the polarization direction alternates between the blocks.  相似文献   

14.
The ability of a star-shaped tris(triazolyl)triazine derivative to hierarchically build supramolecular chiral columnar organizations through the formation of H-bonded complexes with benzoic acids was studied from a theoretical and experimental point of view. The combined study has been done at three different levels including the study of the structure of the triazine core, the association with benzoic acids in stoichiometry 1:3, and the assembly of 1:3 complexes in helical aggregates. Although the star-shaped triazine core crystallizes in a non-C3 conformation, the C3-symmetric conformation is theoretically predicted to be more stable and gives rise to a favorable C3 supramolecular 1:3 complex upon the interaction with three benzoic acids in their voids. In addition, calculations at different levels (DFT, PM7, and MM3) for the 1:3 host-guest complex predict the formation of large stable columnar helical aggregates stabilized by the compact packing of the interstitial acids by π–π and CH⋅⋅⋅π interactions. The acids restrict the movement of the the star-shaped triazine cores along the stacking axis causing a template effect in the self-assembly of the complex. Theoretical predictions correlate with experimental results, since the interaction with achiral or chiral 3,4,5-(4-alkoxybenzyloxy)benzoic acids gives rise to supramolecular complexes that organize in bulk hexagonal columnar mesophases stable at room temperature with intracolumnar order. The existence of supramolecular chirality in the mesophase was determined for complexes formed by acids derived from (S)-2-octanol. Chiral aggregation was also evidenced for complexes formed in dodecane.  相似文献   

15.
Two series of a unique class of columnar liquid crystals derived from tris(N-salicylideneaniline)s [TSANs] in which the proton and the electron interact with each other through the H-bonding environment are reported. The synthesis is carried out by condensing 1,3,5-triformylphloroglucinol with the respective dialkoxyanilines or trialkoxyanilines. 1H NMR and 1H-1H COSY NMR studies revealed their existence as an inseparable mixture of two keto-enamine tautomeric forms with C3h and Cs rotational symmetries instead of the expected enol-imine form. The influence of the number of peripheral alkoxy tails on the columnar mesomorphic behavior is investigated by using polarizing optical microscopy, differential scanning calorimetry, and X-ray scattering. The fluid/glassy columnar states probed for a number of representative compounds confirmed the D6h (hexagonal) or D2h (rectangular) symmetry of the columns. The electronic absorption and emission characteristics of these compounds have been studied in both mesomorphic and solution states. Of special interest, the photoluminescence spectra of solution and fluid/glassy two-dimensional structure evidently disclose the promising light generating capability of these new discotics systems.  相似文献   

16.
The supramolecular architectures of a fluorophore are controlled through the design of a conjugated polycatenar molecule, the self-assembly of which can be addressed toward a columnar liquid-crystalline phase and organogels. Thus, depending on the environmental conditions for self-assembly, compound CA9 organizes into an unprecedented hexagonal columnar mesophase in the condensed state, in which half a molecule constitutes the slice of the column, or into a rectangular mesomorphic-like organization in the presence of apolar solvents such as cyclohexane and dodecane, at a concentration in which fibers form and gelling conditions are fulfilled. In this Col(r)-type arrangement, the organization within the columns depends on the solvent. All of the materials prepared show luminescence, and moreover, a remarkable 3-fold increase in fluorescence intensity was observed in going from the solution to the gel state.  相似文献   

17.
New fan-shaped ionic liquids forming columnar liquid crystalline phases have been prepared to obtain one-dimensional ion-transporting materials. The ionic liquids consist of two incompatible parts: an imidazolium-based ionic part as an ion-conducting part and tris(alkyloxy)phenyl parts as insulating parts. Two compounds having octyl and dodecyl chains have been synthesized. Self-assembly of these materials leads to the formation of thermotropic hexagonal columnar liquid crystalline states at room temperature. Anisotropic one-dimensional ionic conductivities have been successfully measured by the cells having comb-shaped gold electrodes. The self-organized columns have been aligned macroscopically in two directions by shearing perpendicular and parallel to the electrodes. The ionic conductivities parallel to the column axis are higher than those perpendicular to the axis. The incorporation of lithium salts in these columnar materials leads to the enhancement of the ionic conductivities and their anisotropy. These materials would be useful for anisotropic transportation of ions at the nanometer level.  相似文献   

18.
The synthesis, structural, and retrostructural analysis of a library of self‐assembling dendrons containing triethyl and tripropyl ammonium, pyridinium and 3‐methylimidazolium chloride, tetrafluoroborate, and hexafluorophosphate at their apex are reported. These dendritic ionic liquids self‐assemble into supramolecular columns or spheres which self‐organize into 2D hexagonal or rectangular and 3D cubic or tetragonal liquid crystalline and crystalline lattices. Structural analysis by X‐ray diffraction experiments demonstrated the self‐assembly of supramolecular dendrimers containing columnar and spherical nanoscale ionic liquid reactors segregated in their core. Both in the supramolecular columns and spheres the noncovalent interactions mediated by the ionic liquid provide a supramolecular polymer and therefore, these assemblies represent a new class of dendronized supramolecular polymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4165–4193, 2009  相似文献   

19.
Unlike thermotropic liquid‐crystalline C3‐symmetric molecules with flexible chains, the herein‐designed fully rigid three‐armed molecules (C3‐symmetric and unsymmetric) create a fancy architecture for the formation of lyotropic liquid crystals in water. First, hollow columns with triple‐stranded helices, analogous to helical rosette nanotubes, are spontaneously constructed by self‐organization of the rigid three‐armed molecules. Then, the helical nanotubes arrange into hexagonal liquid‐crystalline phases, which show macroscopic chirality as a result of supramolecular chiral symmetry breaking. Interestingly, the helical nanotubes constructed by the fully rigid molecules are robust and stable over a wide concentration range in water. They are hardly affected by ionic defects at the molecular periphery, that is, further decoration of functional groups on the molecular arms can presumably be realized without changing the helical conformation. In addition, the formed columnar phases can be aligned macroscopically by simple shear and show anisotropic ionic conductivity, which suggests promising applications for low‐dimensional ion‐conductive materials.  相似文献   

20.
A series of newly synthesised rod‐like polycatenar mesogens forms columnar phases, with the number of molecules in the column cross section depending on the core rigidity. For non‐symmetric molecules, an additional density modulation, namely helical arrangement of molecules with a periodicity of approximately 10 molecular distances develops along the columns. For one of the compounds, a new type of columnar liquid crystal phase with 3D positional order is observed. Introducing a stilbene unit in the mesogenic core enhances the fluorescent properties of the compounds. In the hexagonal columnar phase, polarised light emission is observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号