首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
Hexagonal and prismatic nanowalled ZnO microboxes   总被引:1,自引:0,他引:1  
Zhao F  Lin W  Wu M  Xu N  Yang X  Tian ZR  Su Q 《Inorganic chemistry》2006,45(8):3256-3260
We hereby report hydrothermal syntheses of new microstructures of semiconducting ZnO. Single-crystalline prismatic ZnO microboxes formed by nanowalls and hexagonal hollow microdisks closed by plates with micron-sized inorganic fullerene-like structures have been made in a base-free medium through a one-step hydrothermal synthesis with the help of n-butanol (NB). Structures and morphologies of the products were confirmed by results from powder X-ray diffraction and scanning electron microscopy. NB has been found to play a crucial role in the growth of these hollow structures. It is indicated that these hollow ZnO crystals were grown from redissolution of interiors. These ZnO microboxes exhibit a band emission in the visible range, implying the possession of a high content of defects.  相似文献   

2.
Here, we report a new and rapid way to decompose Zn(OH)2 for the fabrication of ZnO nanotube using dielectric barrier discharge (DBD) plasma initiated at ambient condition. X-ray diffraction, field emission scanning electron microscope and high-resolution transmission electron microscopy were employed to characterize the fabricated ZnO nanotube. The results show that hexagonal hollow tubes in a wurtzite phase are obtained. Compared to the ZnO powder prepared by the thermal calcination, the DBD plasma made ZnO nanotube shows an enhanced performance for H2S removal at low temperature.  相似文献   

3.
This paper presents a novel and facile method for the fabrication of ZnO hollow spheres. In this approach, zinc ions were first adsorbed onto the surfaces of sulfonated polystyrene core-shell template spheres, and then reacted with NaOH to form a ZnO crystal nucleus, which was followed by a growth step to form ZnO nanoshells. During the formation of ZnO nanoshells or later on, the template spheres were "dissolved" in the same media to obtain ZnO hollow spheres directly. Neither additional dissolution nor calcination process was needed in this method to remove the templates, and the reaction conditions were very mild: neither high temperature nor long time was needed. Transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and Brunauer-Emmett-Teller analysis were used to investigate the morphology, surface composition, crystalline structure, specific surface area, and porosity of the ZnO hollow spheres, respectively. UV-visible spectra show that these ZnO hollow spheres had very good photocatalytic activity.  相似文献   

4.
Delicate hollow ZnO urchins have been fabricated by thermal evaporation of metallic zinc powders in a tube furnace without the use of additive, high temperature, or low pressure. The phase transformation, morphologies, and photoluminescence evolution of the ZnO products were carefully studied and investigated with X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), and photoluminescence (PL) spectra. These studies indicated that the growth of hollow ZnO urchins involves the vaporization of Zn powder, solidification of liquid droplets, surface oxidation, sublimation, and self-catalytic growth of one-dimensional nanowires.  相似文献   

5.
用络合剂乙二胺四乙酸(EDTA)辅助水热法合成了NaYF4纳米球和微米棱柱,通过控制反应条件得到了立方相和六方相纳米晶体;采用X射线粉末衍射仪(XRD)、扫描电子显微镜(SEM)及荧光光谱仪(PL)分析了产物的结构、形貌及发光性能.结果表明,络合剂EDTA和氟化物的物质的量对NaYF4的形貌和粒度有很大影响,且产物的荧光性能呈现出尺寸依赖性.  相似文献   

6.
One-dimensional hollow hexagonal ZnO rods (1-D HHZRs) were grown onto the SnO2: F (FTO) coated glass substrates by using two-step deposition techniques. Initially, the ZnO seed layer was coated onto the FTO which was followed by hydrothermal route in order to grow 1-D HHZRs. These 1-D HHZRs were decorated with Eosin-Y dye and CdS semiconductor nanoparticles (NPs) by using a chemical routes like dip coating and successive ionic layer absorption reaction (SILAR) technique, respectively to improve its photoelectrochemical (PEC) performance. The structural, morphological, optical and electrochemical characterizations of the thin films were analyzed by various sophisticated instruments. X-ray diffraction (XRD) pattern corroborated the phase formation of ZnO and CdS with the hexagonal and cubic crystal structure, respectively. 1-D HHZRs films were obtained by scanning electron microscopy (SEM) with rod diameter of about 1.47 μm. Furthermore, SEM image clearly showed the CdS NPs covered 1-D HHZRs. The direct optical bandgap energy of the samples were estimated to be 3.28, 3.24 and 3.03 eV. CdS NPs-sensitized 1-D HHZRs samples showed hydrophilic nature for water contact angle, which is advantageous for the better improvement in the PEC performance as compared with pristine and dye-sensitized 1-D HHZRs.  相似文献   

7.
ZnO hollow micro/nanostructures were fabricated by a novel fast hydrothermal method based on the microemulsion. The aqueous reverse micelles were used as templates and different amount of Zn2+ colloid was compelled to hydrolyze on its surface. Scanning electron microscopy indicates that the products grown in the solution with colloid volume concentration of 12.3 and 0.5 v.% are hollow nanospheres and hexagonal microtubes, respectively. It is believed that this difference should attribute to the initial shape of hydrolysate and the core/shell state of water/surfactant during hydrothermal treatment.  相似文献   

8.
In recent years, the modi?cation of metal oxides with noble metals to decrease the loading amount of expense of noble metal catalyst and amend the stability of nanocatalyst in chemical reactions has attracted signi?cant attention. Here in this study, the urchin-like double-shelled Pd–PdO/ZnO hollow sphere is successfully prepared by using a simple hydrothermal method and carbon sphere as a hard template. The structure of the catalyst was confirmed by using field-emission scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, energy-dispersive X-ray spectroscope, and BET. The total amount of palladium particles on ZnO was determined by induced coupled plasma analysis. The prepared catalyst gave high catalytic activity for the Suzuki reaction of aryl halides to afford biphenyls under milder conditions. Furthermore, the stability and reusability of catalyst were investigated, and all of the data proved that urchin-like double-shelled Pd–PdO/ZnO hollow sphere could be recycled five times without marked loss of activity.  相似文献   

9.
We report here the preparation of a crystalline, pure hexagonal phase of ZnO as hollow 500–800 nm spheroids in the presence of organic bases, such as pyridine, using zinc acetate as the precursor salt. The spheroids exhibit unique 3D hierarchical architectures, like cocoons, and demonstrate improved superhydrophobic (water contact angle, 150°) character due to the inherited air‐trapped capillarity within the cocoon structure. The simple synthetic strategy used in this process is modified hydrothermolysis (MHT), which represents a general approach and may contribute to the formation mechanism of the hollow nanostructures with highly improved porosity. Depending on the concentration of the precursor salt, it has been possible to cover glass plates or the inner wall of a reaction vessel with ZnO nanocrystals. A low salt concentration (<0.01 M ) allows the easy preparation of a superhydrophobic glass surface, whereas a high salt concentration (>0.01 M ) results in the precipitation of cocoons at the bottom of the reaction vessel as a solid mass together with a deposited thin film of ZnO nanocrystals covering the inner wall of the glass vessel. The thickness of the film successively grows through repetitive hydrothermolysis processes for which a low salt concentration (<0.01 M ) was employed. Because of the hollow cocoonlike morphology, the surface area of the film is greatly increased, which makes it accessible for functionalization by incoming substrates from both sides (internally and externally) and helps to drive a competent photocatalytic dye degradation pathway. The heterocyclic base pyridine exclusively develops cocoons. Thus, the mechanism of self‐aggregation of ZnO nanocrystals under MHT reaction conditions has been studied and the characterization of the compounds has been supported with physical measurements.  相似文献   

10.
高度c轴取向的ZnO膜的低温水热法制备   总被引:1,自引:0,他引:1       下载免费PDF全文
在预先镀有ZnO纳米层的(0001)蓝宝石衬底上利用低温水热法制备出ZnO薄膜。SEM和XRD显示此ZnO膜是由六棱柱状阵列构成的,基于蓝宝石衬底生长,具有高度的c轴择优取向,且(0004)摇摆曲线的FWHM达到1.8°。并发现了在水热溶液中加入一定量六次甲基四胺可以调节六棱柱状ZnO尺寸比例。  相似文献   

11.
离子液体中ZnO纳米棒的制备与表征   总被引:16,自引:1,他引:15  
离子液体中ZnO纳米棒的制备与表征;离子液体;ZnO纳米棒;热分解  相似文献   

12.
杨桃状ZnO纳米片微球的制备及气敏性能的研究   总被引:1,自引:0,他引:1  
以六水合硝酸锌和尿素为原料,水为反应介质,油酸作为表面活性剂,经水热过程合成了由纳米片组装的碱式碳酸锌微球前驱体,经煅烧后得到形貌一致的氧化锌(ZnO)纳米片组装的杨桃状微球。采用X射线衍射仪(XRD)和环境扫描电镜(SEM)对样品进行表征,结果表明产物为六方纤维矿结构的ZnO,微球尺寸比较均一,直径约为20μm,组装单元扇形ZnO纳米片均匀排列,单元之间存在均匀空隙,BET测试显示纳米片呈现多级介孔结孔结构,比表面积为18.9m2·g-1,室温下的光致发光性能表明其结构表面存在大量氧空位,对产物ZnO气敏元件进行了乙醇和丙酮气体敏感性测试。  相似文献   

13.
溶剂热法制备六角锥形ZnO及其光致发光性能   总被引:4,自引:0,他引:4  
通过乙酸锌和醇溶液反应得到了六角锥形纳米ZnO颗粒, 反应过程中不使用碱溶液和表面活性剂. 利用透射电子显微镜(TEM)、选区电子衍射(SAED)及扫描电子显微镜(SEM)对其形貌和结构进行了表征分析. 结果表明, 此方法制备的ZnO颗粒为单晶, 而且六角锥形ZnO的室温光致发光谱(PL)在378 nm处显示出了单纯的紫外发射峰, 而不是通常报道的可见光区发射, 这也预示着这种特殊结构的纳米ZnO将会成为一种具有良好应用前景的光学材料.  相似文献   

14.
以分析纯ZnO作为锌源、NaOH为矿化剂、盐酸为反应溶液pH调节剂,利用水热反应制备了花状ZnO纳米棒;采用扫描电子显微镜和X射线衍射仪分析了产物的形貌和结构,考察了水热温度以及Zn2+和OH-浓度比对产物形貌的影响;以甲基橙为目标降解物,采用紫外-可见分光光度计研究了ZnO纳米棒的光催化性能.结果表明,在水热反应温度80℃、Zn2+/OH-浓度比1∶7.5条件下所得ZnO纳米棒呈花状聚合,直径约为200nm,长度约为2μm,具有六方纤锌矿结构.当甲基橙初始浓度为30 mg.L-1、ZnO纳米棒的投放量为1.5g.L-1时,以300W紫外灯照射150min,甲基橙的降解率可达90%.  相似文献   

15.
控制实验合成条件,利用溶胶-凝胶法和化学溶液生长法制备出不同形貌的ZnO纳米结构。采用X射线衍射仪(XRD)、扫描电子显微镜( SEM) 以及透射电子显微镜(TEM)等多种测试手段对ZnO纳米结构的微观形态及晶相进行了分析。结果表明:3种ZnO纳米结构形貌虽不同,但均具有Z nO六方纤锌矿晶相结构。ZnO纳米棒和花状ZnO纳米结构为单晶,生长方向均沿(0001)方向。ZnO纳米球则为多晶。  相似文献   

16.
ZnO was successfully prepared by the conventional synthetic route. Polyvinylpyrrolidone was used as soft-template to synthesize ZnO with controllable size and shape. It was found that ZnO was synthesized with average crystal size of 49 nm, as reported by an X-ray diffraction experiment. Scanning electron microscopy and transmission electron microscopy confirmed the hexagonal shape of the as-synthesized ZnO. The thus prepared ZnO colloidal particles exhibited numerous opportunities for numerous applications.  相似文献   

17.
ZnO was successfully prepared by the conventional synthetic route. Polyvinylpyrrolidone was used as soft-template to synthesize ZnO with controllable size and shape. It was found that ZnO was synthesized with average crystal size of 49 nm, as reported by an X-ray diffraction experiment. Scanning electron microscopy and transmission electron microscopy confirmed the hexagonal shape of the as-synthesized ZnO. The thus prepared ZnO colloidal particles exhibited numerous opportunities for numerous applications.  相似文献   

18.
A novel and simple one-step solid state reaction in the presence of a suitable surfactant, sodium dodecyl sulfate (SDS), and a novel precursor, [bis(acetylacetonato)zinc(II)]; [Zn(acac)2]; has been developed to synthesize uniform zinc oxide microflakes with an average thickness of 0.3–2.4 μm. In the absence of SDS the product samples contained microrods. The formation of zinc oxide microflakes depends on the molar ratio of Zn(II)/SDS and the experimental procedure. The products were characterized by X-ray diffraction, photoluminescence spectroscopy, FT-IR spectroscopy, surface area, scanning electron microscopy and transmission electron microscopy to depict the phase and morphology. The synthesized ZnO microflakes have a hexagonal zincite structure.  相似文献   

19.
Well-crystallized zinc oxide nanorods have been fabricated by single step solid-state reaction using zinc acetate and sodium hydroxide, at room temperature. The sodium lauryl sulfate (SLS) stabilized zinc oxide nanorods were characterized by using X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and photoluminescence spectroscopy. The X-ray diffraction revealed the wurtzite structure of zinc oxide. The size estimation by XRD and TEM confirmed that the ZnO nanorods are made of single crystals. The growth of zinc oxide crystals into rod shape was found to be closely related to its hexagonal nature. The mass ratio of SLS:ZnO in the nanorods was found to be 1:10 based on the thermogravimetric analysis. Blue shift of photoluminescence emission was noticed in the ZnO nanorods when compared to that of ZnO bulk. FT-IR analysis confirmed the binding of SLS with ZnO nanorods. Apart from ease of preparation, this method has the advantage of eco-friendliness since the solvent and other harmful chemicals were eliminated in the synthesis protocol.  相似文献   

20.
以醋酸锌和氢氧化钠为原料, 以水和含不同长度烷基链的咪唑类氯盐离子液体的混合物作为反应介质, 采用水热法合成出不同形貌的微/纳米ZnO晶体, 用扫描电子显微镜(SEM)和X射线衍射仪(XRD)对合成的ZnO晶体进行表征. 研究了烷基链长度、 离子液体用量、 反应时间以及反应温度对形成棒状ZnO晶体形貌的影响. 实验结果表明, 所制备的棒状ZnO晶体样品均为六方晶系结构. 在棒状ZnO晶体的制备过程中, 控制反应温度, 选择不同的离子液体及其用量十分重要.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号