首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
针对日益严峻的CO_2过量排放问题,利用可再生能源驱动CO_2转化利用是理想的解决方案.采用电催化、光催化、光电催化以及生物光电催化CO_2还原的技术手段,以CO_2为原料获得高附加值的化学品或高能量密度的燃料,是当前世界范围内的研究热点.本文综述了近3年光、电、生物等催化CO_2转化所取得的重要研究进展,并对其未来发展方向进行了展望.  相似文献   

2.
应用电化学阳极氧化法在纯Ti基底上制备高度有序的TiO2纳米管阵列,考察了Ti/TiO2光阳极的光电化学响应.以苯酚溶液为目标污染物,研究Ti/TiO2电极的光电催化性能,并与光催化性能进行比较.结果表明,该电极光电催化性能优于光催化性能.施加0.6 V电压时,光电催化性能最好.电化学阻抗谱分析显示,光电催化和光催化降解过程的速控步骤均为表面反应步骤,外加偏压减小了界面电荷转移阻抗,提高了光生载流子的分离效率.  相似文献   

3.
光沉积法系1978年引进催化领域的新技术。由该法制备的负载型金属催化剂具有低负载量,高分散度,落位有效,条件温和,寿命长等优点,在光催化和电催化中用途很广。以光催化途径代替若干热化学过程可以获得特有的效果。所载的金属组分可能产生:(1)光生载流子电荷分离的增强效应;(2)氧化还原反应的催化效应;以及(3)半导体光谱响应的敏化效应。  相似文献   

4.
正目前,人类使用大量化石资源,排放大量CO_2,因而导致一系列生态环境和社会问题,CO_2减排势在必行。CO_2减排可以通过存储等方式部分实现,但利用太阳能等可再生能源通过光催化、光电催化或电解水制氢进行CO_2加氢制甲醇等燃料及化学品是实现CO_2减排和碳资源可持续利用最佳策略~(1,2)。因此,发展高性能CO_2加氢制甲醇催化技术十分必要。传统用于合成气制甲醇的Cu  相似文献   

5.
随着工业化的推进,化石能源的消耗产生大量温室气体,其中CH4和CO2占据温室气体排放的98%以上。将CH4和CO2转化为高附加值化学品具有重要的意义,一直受到工业界和学术界广泛关注。传统的热催化甲烷干重整(DRM)可实现将CH4和CO2转化为合成气,但该反应过程受热力学限制,需要很高的能量输入,并且由于反应温度较高,催化剂易发生积碳而失活。绿色环保的光催化技术可以使甲烷干重整反应在温和条件下进行,但是存在太阳光利用率和反应转化率较低等问题。最近光热协同催化受到学术界广泛关注。许多研究结果表明,在相对温和的条件下,光热催化DRM可以获得良好的催化效果,可有效实现太阳能转化为化学能。本文简要介绍近期光热催化甲烷干重整反应的研究进展,总结不同金属催化剂在光热催化甲烷干重整中的应用,同时提出了光热催化甲烷干重整存在的一些挑战及展望。  相似文献   

6.
氨(NH3)是一种现代社会必需的化学物质。目前,工业上合成NH3仍然采用的是Haber-Bosch过程,即以H2和N2为反应物在铁基催化剂的作用下于高温(400-600℃)高压(20-40Mpa)下将N2转化为NH3。然而,其效率只有10%-15%,同时造成大量的能源消耗,而且CO2排放不可避免。开发构建可持续发展的清洁友好的新能源体系是解决能源危机和环境污染问题、实现碳达峰和碳中和的关键战略。半导体光(电)催化固氮可以利用绿色无污染的太阳能制取重要的基础化工原料氨,有望代替传统的化工制氨工艺,解决其能源消耗严重和环境污染的问题。本文概述了光(电)催化固氮反应及其影响因素、光催化、电催化和光电催化固氮反应实验装置与基本特征、光(电)催化固氮反应催化剂研究进展、光电催化固氮反应机理,着重论述了半导体光催化剂、光(电)催化固氮体系以及光催化固氮机理的最新进展,并对太阳能光催化固氮技术加以评述和展望。  相似文献   

7.
CO_2是一种对大气环境有重要影响的温室气体,同时又是一种廉价的碳源.合成氨工业中用NH_3和CO_2反应生成尿素和碳酸氢铵是CO_2大规模利用的典范.近年来研究表明,在高效催化剂的作用下,CO_2可以作为原料参与精细化学品的合成,如CO_2与H_2(或有机硅)和胺反应可以生成N-甲酰胺和N,N-二甲基胺类化合物.同时,CO_2还可以作为原料参与大宗基础化学品的合成,如CO_2用H_2(或有机硅烷)还原可以生成甲(乙)酸,CO_2和H_2在不同反应条件下可以生成低碳烯烃或甲醇等高附加值的化学品,这为CO_2的转化和利用开辟了新途径.本文对近年来CO_2与H_2(或有机硅烷)和胺反应生成N-甲酰胺和N,N-二甲基胺类化合物、H_2(或有机硅烷)还原CO_2生成甲酸、CO_2和H_2生成低碳烯烃和甲醇的一些高效催化剂体系、催化反应工艺条件、催化反应机理等方面的研究进展进行了归纳、评述和展望,以期对开发CO_2催化转化为高附加值化学品的新工艺提供参考.  相似文献   

8.
CO_2是一种储量丰富且廉价易得的可再生C1资源.以CO_2为原料的羧化反应可将CO_2高效转化成羧酸及其衍生物等高附加值化学品.例如,CO_2和环氧化物反应生成环状碳酸酯属于"原子经济"反应,是有效利用CO_2的方法之一,其产物环状碳酸酯广泛用于极性有机溶剂、电池电解液和化妆品等.由于CO_2化学性质非常稳定,不易活化,制备环状碳酸酯的传统方法是以金属卤化物或金属配合物为催化剂在高温高压下进行反应.因此,开发出操作简便且能耗低的绿色技术用于合成环状碳酸酯面临巨大挑战.最近研究表明,电催化技术可使环氧化物和CO_2在温和条件下转化为环状碳酸酯.已报道的电催化反应研究重点都是如何通过多相或均相电催化还原CO_2的方式使环氧化物能够在温和条件下进行羧化反应.然而,CO_2电还原生成的CO_2·-自由基非常活泼,在其扩散到溶液中与环氧化物反应之前易在电极上直接转化为CO和碳酸盐等副产物,从而导致羧化反应较低的电流效率.Ema课题组报道环氧化物与CO_2羧化反应经历三个步骤,即开环反应、CO_2插入反应和闭环反应,其中开环反应活化能最大,是羧化反应决速步骤.与已报道的电催化途径不同,本文通过建立一个由电化学反应和羧化反应组成的催化反应体系,旨在通过降低开环反应活化能来促进环氧化物羧化反应.在电化学反应过程中,由牺牲阳极提供羧化反应必需的路易斯酸,即电制镁盐;在羧化反应过程中,通过电制镁盐和咪唑溴盐的协同作用实现环氧化物和CO_2在温和条件下高效率地转化为环状碳酸酯.实验首先选取环氧苯乙烷为反应原料,考察了电制镁盐、共催化剂的阳离子以及羧化反应温度对目标产物产率的影响.如果羧化反应过程中没有镁盐或直接用等量溴化镁代替电制镁盐,羧化产率仅为5.4%和35.5%,而电制镁盐条件下羧化反应产率高达90.7%,表明电制镁盐作为路易斯酸催化剂对提高羧化反应产率是必不可少的.比较了在N2和CO_2气氛中分别电解制备得到的镁盐的催化性能.N2气氛中电制镁盐更高的催化性能可能与溶剂乙腈或支持电解质的阳离子在阴极发生电还原生成的物质有关.该电还原产物可部分代替溴离子与电制镁盐配对,由于其体积更大,一定程度上提高了电制镁盐的亲电性,有利于羧化反应进行.如果用四丁基溴化铵代替咪唑溴盐作为共催化剂,羧化反应产率从90.7%降为65.5%.羧化反应过程中溴离子对电制镁盐的配对能力受共催化剂阳离子静电引力的牵制而减弱,共催化剂的阳离子对溴离子的静电引力越强,溴离子对电制镁盐亲电性的影响就越弱.前期研究成果表明,在乙腈溶液中咪唑阳离子对阴离子的静电引力明显强于季铵阳离子,由此可认为当咪唑溴盐作为共催化剂时提高了电制镁盐的亲电性,促进了环氧化物的开环反应.提高羧化反应温度虽然可以降低环氧化物开环反应的活化能,但也会降低CO_2在乙腈溶液中的溶解度,50°C反应较为合适.在最优反应条件下考察了该催化体系对其他环氧化物羧化反应的普适性,所得环状碳酸酯产率为48.3%–90.7%.  相似文献   

9.
生物质是一类丰富的可再生碳基资源, 有望代替传统化石资源生产燃料和化学品, 受到了广泛关注和研究. 近年来, 电催化作为一种绿色高效的转化策略, 成为生物质催化转化的重要研究方向之一, 具有巨大的应用前景. 本文总结了生物质平台化合物电催化制备高附加值燃料与化学品的研究进展, 根据反应类型重点介绍了电催化氧化、 还原和偶联反应, 对催化反应过程和机理进行了阐述, 并对电催化生物炼制的前景进行了展望.  相似文献   

10.
《电化学》2017,(3)
温室气体CO_2的绿色高效转化利用是当前的研究热点.其中,有机物的电化学羧化反应是CO_2利用的有效途径.温和条件(常温常压)下,有机底物电还原生成的碳负离子可以捕获体系中的CO_2,进而合成具有高附加值的有机羧酸类化合物.本文重点介绍了作者课题组在电羧化反应方面的研究进展,包括各类电活性基团物质的电羧化反应以及不对称电羧化反应.  相似文献   

11.
Industrial revolution has led to increased combustion of fossil fuels. Consequently, large amounts of CO2 are emitted to the atmosphere, throwing the carbon cycle out of balance. Currently, the most effective method to reduce the CO2 concentration is direct CO2 capture from the atmosphere and pumping of the captured CO2 deep underground or into the mid-ocean. The transformation of CO2 into high-value chemicals is an attractive yet challenging task. In recent years, there has been much interest in the development of CO2 utilization technologies based on electrochemical CO2 reduction, photochemical CO2 reduction, and thermal CO2 reduction, and CO2 valorization has emerged as a hot research topic. In electrochemical CO2 reduction, the cathodic reaction is the reduction of CO2 to value-added chemicals. The anodic reaction should be the oxygen evolution reaction, and water is the only renewable and scalable source of electrons and protons in this reaction. There is a plethora of research on the use of various metals to catalyze this reaction. Among these, Cu-based materials have been demonstrated to show unique catalytic activity and stability for the electrochemical conversion of CO2 to valuable fuels and chemicals. Moreover, the solar-driven conversion of CO2 into value-added chemical fuels has attracted great attention, and much effort is being devoted to develop novel catalysts for the photoreduction of CO2, especially by mimicking the natural photosynthetic process. The key step in the photocatalytic process is the efficient generation of electron-hole pairs and separation of these charge carriers. The efficient separation of photoinduced charge carriers plays a crucial role in the final catalytic activity. Compared with CO2 reduction via electrocatalysis and photocatalysis, thermal reduction is more attractive because of its potential large-scale application in the industry. Heterogeneous nanomaterials show excellent activity in the electrocatalytic, photocatalytic, and thermal catalytic conversion of CO2. However, nanostructured materials have drawbacks on the investigation of the intrinsic activity of the active sites. In recent years, single-site catalysts have become popular because they allow for maximum utilization of the metal centers, show specific catalytic performance, and facilitate easy elucidation of the catalytic mechanism at the molecular level. Accordingly, numerous single-site catalysts were developed for CO2 reduction to produce value-added chemicals such as CO, CH4, CH3OH, formate, and C2+ products. Value-added chemicals have also been synthesized with the aid of amines and epoxides. This review summarizes recent state-of-the-art single-site catalysts and their application as heterogeneous catalysts for the electroreduction, photoreduction, and thermal reduction of CO2. In the discussion, we will highlight the structure-activity relationships for the catalytic conversion of CO2 with single-site catalysts.  相似文献   

12.
Photocatalytic reduction of CO2 to hydrocarbon compounds is a promising method for addressing energy shortages and environmental pollution. Considerable efforts have been devoted to exploring valid strategies to enhance photocatalytic efficiency. Among various modification methods, the hybridization of different photocatalysts is effective for addressing the shortcomings of a single photocatalyst and enhancing its CO2 reduction performance. In addition, metal-free materials such as g-C3N4 and black phosphorus (BP) are attractive because of their unique structures and electronic properties. Many experimental results have verified the superior photocatalytic activity of a BP/g-C3N4 composite. However, theoretical understanding of the intrinsic mechanism of the activity enhancement is still lacking. Herein, the geometric structures, optical absorption, electronic properties, and CO2 reduction reaction processes of 2D/2D BP/g-C3N4 composite models are investigated using density functional theory calculations. The composite model consists of a monolayer of BP and a tri-s-triazine-based monolayer of g-C3N4. Based on the calculated work function, it is inferred that electrons transfer from g-C3N4 to BP owing to the higher Fermi level of g-C3N4 compared with that of BP. Furthermore, the charge density difference suggests the formation of a built-in electric field at the interface, which is conducive to the separation of photogenerated electron-hole pairs. The optical absorption coefficient demonstrates that the light absorption of the composite is significantly higher than that of its single-component counterpart. Integrated analysis of the band edge potential and interfacial electronic interaction indicates that the migration of photogenerated charge carriers in the BP/g-C3N4 hybrid follows the S-scheme photocatalytic mechanism. Under visible-light irradiation, the photogenerated electrons on BP recombine with the photogenerated holes on g-C3N4, leaving photogenerated electrons and holes in the conduction band of g-C3N4 and the valence band of BP, respectively. Compared with pristine g-C3N4, this S-scheme heterojunction allows efficient separation of photogenerated charge carriers while effectively preserving strong redox abilities. Additionally, the possible reaction path for CO2 reduction on g-C3N4 and BP/g-C3N4 is discussed by computing the free energy of each step. It was found that CO2 reduction on the composite occurs most readily on the g-C3N4 side. The reaction path on the composite is different from that on g-C3N4. The heterojunction reduces the maximum energy barrier for CO2 reduction from 1.48 to 1.22 eV, following the optimal reaction path. Consequently, the BP/g-C3N4 heterojunction is theoretically proven to be an excellent CO2 reduction photocatalyst. This work is helpful for understanding the effect of BP modification on the photocatalytic activity of g-C3N4. It also provides a theoretical basis for the design of other high-performance CO2 reduction photocatalysts.   相似文献   

13.
The photocatalytic hydrogen evolution reaction (PHER) has gained much attention as a promising strategy for the generation of clean energy. As opposed to conventional hydrogen evolution strategies (steam methane reforming, electrocatalytic hydrogen evolution, etc.), the PHER is an environmentally friendly and sustainable method for converting solar energy into H2 energy. However, the PHER remains unsuitable for industrial applications because of efficiency losses in three critical steps: light absorption, carrier separation, and surface reaction. In the past four decades, the processes responsible for these efficiency losses have been extensively studied. First, light absorption is the principal factor deciding the performance of most photocatalysts, and it is closely related to band-gap structure of photocatalysts. However, most of the existing photocatalysts have a wide bandgap, indicating a narrow light absorption range, which restricts the photocatalytic efficiency. Therefore, searching for novel semiconductors with a narrow bandgap and broadening the light absorption range of known photocatalysts is an important research direction. Second, only the photogenerated electrons and holes that migrate to the photocatalyst surface can participate in the reaction with H2O, whereas most of the photogenerated electrons and holes readily recombine with one another in the bulk phase of the photocatalysts. Hence, tremendous effort has been undertaken to shorten the charge transfer distance and enhance the electric conductivity of photocatalysts for improving the separation and transfer efficiency of photogenerated carriers. Third, the surface redox reaction is also an important process. Because water oxidation is a four-electron process, sluggish O2 evolution is the bottleneck in photocatalytic water splitting. The unreacted holes can easily recombine with electrons. Sacrificial agents are widely used in most catalytic systems to suppress charge carrier recombination by scavenging the photogenerated holes. Moreover, the low H2 evolution efficiency of most photocatalysts has encouraged researchers to introduce highly active sites on the photocatalyst surface. Based on the abovementioned three steps, multifarious strategies have been applied to modulate the physicochemical properties of semiconductor photocatalysts with the aim of improving the light absorption efficiency, suppressing carrier recombination, and accelerating the kinetics of surface reactions. The strategies include defect generation, localized surface plasmon resonance (LSPR), element doping, heterojunction fabrication, and cocatalyst loading. An in-depth study of these strategies provides guidance for the design of efficient photocatalysts. In this review, we focus on the mechanism and application of these strategies for optimizing light absorption, carrier separation and transport, and surface reactions. Furthermore, we provide a critical view on the promising trends toward the construction of advanced catalysts for H2 evolution.  相似文献   

14.
工业化无疑促进了经济的发展,提高了生活水平,但也导致了一些问题,包括能源危机、环境污染、全球变暖等, 其中这些所产生问题主要是由燃烧煤炭、石油和天然气等化石燃料引起的。光催化技术具有利用太阳能将二氧化碳转化为碳氢化合物燃料、从水中制氢、降解污染物等优点,从而在解决能源危机的同时避免环境污染,因此被认为是解决这些问题的最有潜力的技术之一。在各种光催化剂中,碳化硅(SiC)由于其优良的电学性能和光电化学性质,在光催化、光电催化、电催化等领域具有广阔的应用前景。本文首先系统地阐述了各种SiC的合成方法,具体包括模板生长法、溶胶凝胶法、有机前驱物热解法、溶剂热合成法、电弧放电法,碳热还原法和静电纺丝等方法。然后详细地总结了提升SiC光催化活性的各种改性策略,如元素掺杂、构建Z型(S型)体系、负载助催化剂、可见光敏化、构建半导体异质结、负载炭材料、构建纳米结构等。最后重点论述了半导体的光催化机理以及SiC复合物在光催化产氢、污染物降解和CO2还原等领域的应用研究进展,并提出了前景展望。  相似文献   

15.
Carbon dioxide (CO2) is one of the main greenhouse gases in the atmosphere. The conversion of CO2 into solar fuels (CO, HCOOH, CH4, CH3OH, etc.) using artificial photosynthetic systems is an ideal way to utilize CO2 as a resource and reduce CO2 emissions. A typical artificial photosynthetic system is composed of three key components: a photosensitizer (PS) to harvest visible light, a catalyst (C) to catalyze CO2 or protons into carbon-based fuels or H2, respectively, and a sacrificial electron donor (SED) to consume the holes generated in the PS. In most cases, the PS and catalyst are two different components of a system. However, some components that possess both light harvesting and redox catalysis functionalities, e.g., nano-semiconductors, are referred to as photocatalysts. During photocatalysis, the PS is typically excited by photons to generate excited electrons. The excited electrons in the PS are transferred to the catalyst to generate a reduced catalyst. The reduced catalyst is used as an active intermediate to perform CO2 binding and transformation. The PS can be recovered through a reaction with the SED. Nano-semiconductors have been used as photosensitizers and/or photocatalysts in photocatalytic CO2 reduction systems owing to their excellent photophysical and photochemical properties and photostability. CdS and CdSe nano-semiconductors, such as quantum dots, nanorods, and nanosheets, have been widely used in the construction of photocatalytic CO2 reduction systems. Systems based on CdS or CdSe nano-semiconductors can be classified into three categories. The first category is systems based on CdS or CdSe photocatalysts. In these systems, CdS or CdSe nano-semiconductors function as photocatalysts to catalyze CO2 reduction without a co-catalyst under visible-light irradiation. The CO2 reduction reaction occurs at the surface of the CdS or CdSe nano-semiconductors. The second category is systems based on CdS or CdSe composite photocatalysts. CdS or CdSe nano-semiconductors are combined with functional materials, such as reduced graphene oxide or TiO2, to prepare composite photocatalysts. These composite photocatalysts are expected to improve the lifetime of the charge separation state and inhibit the photocorrosion of the nano-semiconductors during photocatalysis. The third category is hybrid systems containing a CdS nano-semiconductor and molecular catalysts, such as nickel and cobalt complexes and iron porphyrin. In these hybrid systems, CdS functions as a photosensitizer and the CO2 reduction reaction occurs at the molecular catalyst. This review article introduces the construction of artificial photosynthetic systems and the photocatalytic mechanism of nano-semiconductors, and summarizes the representative works in the three aforementioned categories of systems. Finally, the challenges of nano-semiconductors for photocatalytic CO2 reduction are discussed.  相似文献   

16.
四溴双酚A(TBBPA)是一种重要的塑料添加剂和阻燃剂,广泛用于树脂、塑料、胶黏剂以及涂料中.它不仅是持久性的机污染物,还是一种内分泌干扰物,具有免疫毒性、神经毒性和细胞毒性.NOx,特别是NO,是主要的大气污染物之一,是形成PM2.5的重要前体,也容易引起酸雨,引发光化学烟雾、臭氧损耗、温室效应等,严重危害生态环境和...  相似文献   

17.
S型异质结不但可以提高载流子的分离效率,还可以维持较强的氧化还原能力。因此,构建S型异质是提高光催化二氧化碳还原反应的有效途径。本研究通过静电自组装法构建了具有近红外光响应(> 780 nm)的二维BiOBr0.5Cl0.5纳米片和一维WO3纳米棒S型异质结光催化剂,并用于高效还原二氧化碳。能带位置和界面电子相互作用的综合分析表明:在光催化二氧化碳还原反应过程中,BiOBr0.5Cl0.5/WO3遵循S型电子转移路径;不仅提高了载流子的高效分离,还维持了两相(BiOBr0.5Cl0.5和WO3)较高的氧化还原能力。此外,二维纳米片/一维纳米棒的结构使得半导体之间具备良好的界面接触,有利于载流子的分离,且暴露更多的活性位点,最终提高催化效率。结果显示,BiOBr0.5Cl0.5/WO3异质结催化剂表现出较高的CO2还原能力和CO选择性,CO的产率高达16.68 μmol∙g-1∙h-1,分别是BiOBr0.5Cl0.5的1.7倍和WO3的9.8倍。本工作为构建S型二维/一维异质结光催化剂高效还原二氧化碳提供了新的思路。  相似文献   

18.
单原子催化剂在光催化二氧化碳还原中的研究进展   总被引:1,自引:0,他引:1  
通过光催化技术将二氧化碳转化成增值的含碳化学品或燃料是解决能源危机和温室效应的一种可持续性方法. 开发高效、 廉价及高稳定性的光催化剂是提高光催化二氧化碳还原(CO2RR)效率所面临的一大挑战. 单原子催化剂由于具有原子利用率高及电子环境可调等特性而在催化领域被广泛研究. 在光催化二氧化碳还原中, 金属单原子的加入不仅可调节光催化剂的能带结构及吸光性能等物理性质, 还可以有效提高其光生电荷转移效率, 并为研究光催化反应机理提供理想的平台. 近年来, 单原子光催化剂在二氧化碳还原领域的研究发展迅速. 本文综合评述了单原子催化剂在光还原二氧化碳反应中的研究进展, 介绍了不同载体的单原子催化剂的典型研究成果, 并展望了未来的研究趋势.  相似文献   

19.
导电聚合物型光催化材料g-C3N4有着独特的电子结构、稳定的化学性能和显著的可见光催化活性。基于g-C3N4的Z型光催化体系(Z-g-C3N4)的催化效率高、电子-空穴复合率低而备受关注,在光催化领域展现出了巨大的应用潜力。本文阐述了Z-g-C3N4型光催化反应体系的作用机理,综述了Z-g-C3N4在光催化领域的研究进展,介绍了Z-g-C3N4在产氢、转化CO2、降解有机物等光催化领域的应用,讨论了pH值、导电介质等因素对Z-g-C3N4光催化性能的影响。最后指出了Z-g-C3N4光催化体系在研究过程中面临的问题和研究方向。  相似文献   

20.
基于类十面体钒酸铋(BiVO4)和氧化铜(CuO)纳米颗粒, 构筑了CuO/BiVO4异质结光催化剂; 利用X射线衍射仪(XRD)、 X射线光电子能谱仪(XPS)、 扫描电子显微镜(SEM)、 紫外-可见吸收光谱(UV-Vis)、 光电流响应谱(I-t)、 电化学阻抗谱(EIS)和荧光发射光谱(PL)对催化剂的形貌、 结构和光电性能进行了表征和分析. 结果表明, CuO纳米颗粒均匀地负载在BiVO4的表面, 通过控制铜源的用量可以调节CuO的含量, 其含量对CuO/ BiVO4异质结的可见光吸收能力和光生载流子的分离效率有很大的影响. 在气固反应体系下, 对CuO/BiVO4异质结的光催化还原CO2的性能进行了研究. 结果显示, 光催化还原CO2的主要产物为CO和CH4; 随着CuO含量的增加, CO的产率逐渐降低, 而CH4的产率先增加后降低, 最优化催化剂CuO/BiVO4的CO和CH4的产率分别为0.62和1.81 μmol·g-1·h-1, 对CH4的选择性达到最大值(93%). 能带结构分析和电子顺磁共振(EPR)测试结果表明, CuO/BiVO4中光生电荷的转移符合Z型转移机制. Z型异质结构的形成, 促进了光生电子和空穴的分离, 提升了催化体系的氧化还原能力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号