首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Well-defined glycopolymers containing linear and cyclic carbohydrate moieties as pendent groups were prepared by reversible addition fragmentation chain transfer polymerization (RAFT). The RAFT synthesized glycopolymers were used for the aqueous synthesis of stabilized glyconanoparticles. The in situ reduction of the glycopolymers and HAuCl4 resulted in the formation of highly stable modified gold nanoparticles with diameters ranging from 40 to 80 nm in aqueous media. Multifunctional glyconanoparticles were also generated in the presence of varying amounts of biotinylated-polyethyleneglycol (bio-PEG-SH) having terminal thiol groups. The gold nanoparticles underwent aggregation in the presence of streptavidin as revealed by UV-vis spectroscopy. The availability of the biotin for conjugation to streptavidin was also confirmed using surface plasmon resonance (SPR).  相似文献   

2.
We describe here the synthesis of 10 nm, monodisperse, iron oxide nanoparticles that we have coated with temperature-sensitive, biotinylated p(NIPAAm) (b-PNIPAAm). The PNIPAAm was prepared by the reversible addition fragmentation chain transfer polymerization (RAFT), and one end was biotinylated with a PEO maleimide-activated biotin to form a stable thioether linkage. The original synthesized iron oxide particles were stabilized with oleic acid. They were dispersed in dioxane, and the oleic acid molecules were then reversibly exchanged with a mixture of PNIPAAm and b-PNIPAAm at 60 degrees C. The b-PNIPAAm-coated magnetic nanoparticles were found to have an average diameter of approximately 15 nm by dynamic light scattering and transmission electron microscopy. The ability of the biotin terminal groups on the b-PNIPAAm-coated nanoparticles to interact with streptavidin was confirmed by fluorescence and surface plasmon resonance. It was found that the b-PNIPAAm-coated iron oxide nanoparticles can still bind with high affinity to streptavidin in solution or when the streptavidin is immobilized on a surface. We have also demonstrated that the binding of the biotin ligands on the surface of the temperature-responsive magnetic nanoparticles to streptavidin can be turned on and off as a function of temperature.  相似文献   

3.
Over the past two decades, glycosylated nanoparticles (i.e., glyconanoparticles having sugar residues on the surface) received much attention for biomedical applications such as bioassays and targeted drug delivery. This minireview focuses on three aspects: (1) glycosylated gold nanoparticles, (2) glycosylated quantum dots, and (3) glyconanoparticles self-assembled from amphiphilic glycopolymers. The synthetic methods and the multivalent interactions between glyconanoparticles and lectins is shortly illustrated.  相似文献   

4.
A stimuli-responsive magnetic nanoparticle system for diagnostic target capture and concentration has been developed for microfluidic lab card settings. Telechelic poly(N-isopropylacrylamide) (PNIPAAm) polymer chains were synthesized with dodecyl tails at one end and a reactive carboxylate at the opposite end by the reversible addition fragmentation transfer technique. These PNIPAAm chains self-associate into nanoscale micelles that were used as dimensional confinements to synthesize the magnetic nanoparticles. The resulting superparamagnetic nanoparticles exhibit a gamma-Fe2O3 core ( approximately 5 nm) with a layer of carboxylate-terminated PNIPAAm chains as a corona on the surface. The carboxylate group was used to functionalize the magnetic nanoparticles with biotin and subsequently with streptavidin. The functionalized magnetic nanoparticles can be reversibly aggregated in solution as the temperature is cycled through the PNIPAAm lower critical solution temperature (LCST). While the magnetophoretic mobility of the individual nanoparticles below the LCST is negligible, the aggregates formed above the LCST are large enough to respond to an applied magnetic field. The magnetic nanoparticles can associate with biotinylated targets as individual particles, and then subsequent application of a combined temperature increase and magnetic field can be used to magnetically separate the aggregated particles onto the poly(ethylene glycol)-modified polydimethylsiloxane channel walls of a microfluidic device. When the magnetic field is turned off and the temperature is reversed, the captured aggregates redisperse into the channel flow stream for further downstream processing. The dual magnetic- and temperature-responsive nanoparticles can thus be used as soluble reagents to capture diagnostic targets at a controlled time point and channel position. They can then be isolated and released after the nanoparticles have captured target molecules, overcoming the problem of low magnetophoretic mobility of the individual particle while retaining the advantages of a high surface to volume ratio and faster diffusive properties during target capture.  相似文献   

5.
使用生物分子相互作用分析(Biomolecular interaction analysis,BIA)技术实时监测了在链霉素和素表面层层组装亲和素-生物素化抗体多层膜的过程,结果表明,通过链霉素和素与生物素之间的强亲和作用,能够在表面形成均一的多层膜,并用实时BIA技术求得了每层蛋白质的表面浓度,对于生物素化抗体,单层吸附表面浓度为1.32ng/mm^2;对于链霉亲和素,单层吸附表面浓度为2.93ng/mm^2。同时对蛋白质在表面的排列状态进行了探讨。  相似文献   

6.
The adsorption of multiple protein layers on biotinylated organic surfaces has been characterized using surface plasmon resonance (SPR) and atomic force microscopy (AFM). Diffusion-limited loading of the biotinylated self-assembled monolayers (SAMs) ensures a precise control of the streptavidin surface density. For the subsequent interaction with biotinylated peroxidase, SPR data hint at a streptavidin density dependent orientation during peroxidase adsorption. Microcontact printed well-defined two-dimensional patterned surfaces of biotinylated organothiols and protein-resistant OEG-thiols allow an in-situ differentiation of specific and nonspecific adsorption (e.g., mono- vs multilayer adsorption). Additionally, the very important issue of biological activity of surface-bound enzymes is addressed by comparing the enzyme activities in solution with that for surface-bound species.  相似文献   

7.
Biotin was attached via a spacer group to thiomethyl and thiosulfate derivatives of carboxymethylcellulose (CMC) by DCC coupling. A degree of substitution (DS) 0.3 per modified anhydroglucose unit was reached for the biotin moieties. These biotinylated CMCs are able to recognize the receptor protein streptavidin in aqueous solution as demonstrated by gel electrophoresis. Furthermore, they spontaneously form stable monolayers of 1–2 nm thickness on planar gold surfaces as evidenced by surface plasmon resonance (SPR). These monolayers irreversibly bind streptavidin. The observed increase of layer thickness of 6 nm resembles the size of a single streptavidin molecule. Consequently, dense streptavidin monolayers must have been formed. The resulting functional monolayers of CMC derivatives on gold are interesting platforms for biosensors, because they are very stable, hydrophilic, and formed in a reproducible way.  相似文献   

8.
There is a current need for simple methods for immobilizing biomolecules within microfluidic channels. Here, a technique is reported for reversibly immobilizing immunoassay components in a channel zone that can be simply controlled by integrated heating elements. Latex beads were modified with the temperature-responsive polymer poly(N-isopropylacrylamide)(PNIPAAm) and co-modified with biotinylated poly(ethylene glycol)(PEG). PNIPAAm undergoes a hydrophilic-to-hydrophobic transition when the temperature is raised above the lower critical solution temperature (LCST)( approximately 28 degrees C in the solutions used here). This reversible transition drives the aggregation and dis-aggregation of the modified beads in heated zones within poly(ethylene terephthalate)(PET) microchannels. Biotinylated monoclonal antibodies for the drug digoxin were bound via streptavidin to the biotin-PEG-coated beads. These antibody-functionalized beads were then reversibly immobilized by aggregation and hydrophobic adhesion to the surface of PET microfluidic channels in response to a thermal stimulus. The antibodies on the beads immobilized in the channel were shown to bind digoxin and a competitor fluorescent ligand from a flow stream in a quantitative competitive assay format that reported the digoxin concentration. The antibodies could be replenished for each immunoassay trial, using the reversible, temperature-controlled immobilization process. This technique allows reagent immobilization immediately prior to an analytical procedure, following the removal of previously utilized beads, guaranteeing fresh and active immobilized biomolecules. Furthermore, it provides a simple approach to multiplexing through the simultaneous or sequential injection of different antibody-coated bead species, potentially at multiple sites in the integrated device channels.  相似文献   

9.
We report here a novel strategy for the high-sensitive detection of target biomolecules with very low concentrations on a quartz crystal microbalance (QCM) device using gold nanoparticles as signal enhancement probes. By employing a streptavidin-biotin interaction as a model system, we could prepare biotin-conjugated gold nanoparticles maintaining good dispersion and long-term stability by controlling the biotin density on the surface of gold nanoparticles that have been investigated by UV-vis spectra and AFM images. These results showed that 10 microM N-(6-[biotinamido]hexyl)-3'-(2'-pyridyldithio)propionamide (biotin-HPDP) was the critical concentration to prevent the nonspecific aggregation of gold nanoparticles in this system. For sensing streptavidin target molecules by QCM, biotinylated BSA was absorbed on the Au surface of the QCM electrode and subsequent coupling of the target streptavidin to the biotin in the sensing interface followed. Amplification of the sensing process was performed by the interaction of the target streptavidin on the sensing surface with gold nanoparticles modified with 10 microM biotin-HPDP. The biotinylated gold nanoparticles were used as signal amplification probes to improve the detection limit, which was 50 ng/ml, of the streptavidin detection system without signal enhancement, and the calibration curve determined for the net frequency changes showed good linearity over a wide range from 1 ng/ml to 10 microg/ml for the quantitative streptavidin target molecule analysis. In addition, the measured dissipation changes suggested that the layer of biotin-BSA adsorbed on the Au electrode and the streptavidin layer assembled on the biotin-BSA surface were highly compact and rigid. On the other hand, the structure formed by the biotinylated gold nanoparticles on the streptavidin layer was flexible and dissipative, being elongated outward from the sensing surface.  相似文献   

10.
制备了一种能固载目标蛋白质, 却没有非特异性蛋白质吸附的高分子涂层. 该涂层是可生物降解的油水两亲性的三嵌段聚合物, 即生物素偶联的聚乙二醇-聚丙交酯-聚赖氨酸共聚物. 将高分子溶解于N,N-二甲基甲酰胺中, 并涂布在预先包被了聚赖氨酸的脱脂玻片基质上, 形成高分子涂层, 在其表面包被一层由明胶和聚N-乙烯基吡咯烷酮组成的封闭剂. 使用酶标免疫分析法, 对高分子涂层表面的生物活性进行评价. 依次将辣根过氧化物酶标记的链亲和素和生物素偶联的小鼠球蛋白抗原和碱性磷酸酯酶标记的马抗小鼠抗体固载在高分子涂层表面上, 通过标记酶与底物作用生色. 分析结果表明, 经过封闭以后, 生物素化的高分子涂层表面能够排斥非特异性的蛋白质; 同时特异性蛋白质之间(如生物素和链亲和素之间、抗原和抗体之间)的相互作用依然保留, 并且固定在表面的蛋白质依然保留其生物活性. 因此生物素化的聚乙二醇-聚丙交酯-聚赖氨酸三嵌段高分子可以作为生物活性材料, 用于蛋白质固载和蛋白质分离及分析.  相似文献   

11.
We report on the use of new biofunctionalized gold nanoparticles (bio-AuNPs) that enable a surface plasmon resonance (SPR) biosensor to detect low levels of carcinoembryonic antigen (CEA) in human blood plasma. Bio-AuNPs consist of gold nanoparticles functionalized both with (1) streptavidin, to provide high affinity for the biotinylated secondary antibody used in the second step of the CEA sandwich assay, and with (2) bovine serum albumin, to minimize the nonspecific interaction of the bio-AuNPs with complex samples (blood plasma). We demonstrate that this approach makes it possible for the SPR biosensor to detect CEA in blood plasma at concentrations as low as 0.1?ng/mL, well below normal physiological levels (approximately nanograms per milliliter). Moreover, the limit of detection achieved using this approach is better by a factor of more than 1,000 than limits of detection reported so far for CEA in blood plasma using SPR biosensors.  相似文献   

12.
We report the microfluidic fabrication of robust and fluid tethered bilayer arrays within a poly(dimethylsiloxane) (PDMS) chip, and demonstrate its addressability and biosensing by incorporating the GM1 receptor into the bilayer framework for detection of cholera toxin. Rapid optimization of the experimental conditions is achieved by using nanoglassified surfaces in combination with surface plasmon resonance. The ultrathin glassy film on gold mimics glass surfaces employed in microfluidics, allowing real-time monitoring of multiple assembly steps and therefore permitting rapid prototyping of microfluidic arrays. The tethered bilayer array utilizes a covalently immobilized biotinylated protein for generation of well-defined capture zones where a streptavidin link is employed for the immobilization of biotinylated vesicles. Fusion of captured vesicles is accomplished using a concentrated PEG solution, and the lateral diffusion of the tethered bilayer membrane is characterized by fluorescence recovery after photobleaching methods. The tethered membrane arrays demonstrate marked stability and high mobility, which provide an ideal host environment for membrane-associated proteins and open new avenues for high-throughput analysis of these proteins.  相似文献   

13.
以AgNO3为金属源,通过乙醇将与聚N-异丙基丙烯酰胺接枝聚丙烯腈/聚苯乙烯(PNIPAAm-g-PAN/PSt)聚合物微球表面酰胺基团配位的银离子(Ag+)还原,一步法制备了PNIPAAm-g-PAN/PSt载银复合微球。通过傅立叶变换红外(FTIR)和紫外-可见光光谱表征发现,由Ag+还原所得的Ag纳米颗粒被成功地固载在PNIPAAm-g-PAN/PSt 微球上;用透射电子显微镜(TEM)对载银微球的大小和形态进行了表征;热重分析(TGA)结果表明,固载在微球表面的银纳米颗粒的含量(质量分数)为12%;抗菌实验结果表明,所制备的载银微球具有抗革兰氏阴性菌的活性。  相似文献   

14.
This communication reports the first example of polymerization initiated from specific domains on proteins. Streptavidin was coupled with a biotinylated initiator for atom transfer radical polymerization (ATRP) and exposed to an aqueous solution of CuBr/2,2'-bipyridine and monomer. N-Isopropylacrylamide (NIPAAm) and poly(ethylene glycol) methyl ether methacrylate (PEGMA) were readily initiated by the modified streptavidin and polymerized from the protein at room temperature. Formation of streptavidin-polymer conjugates was confirmed by size exclusion chromatography (SEC) and gel electrophoresis. Polymer identity and biotinylation was verified using 1H NMR spectroscopy, gel permeation chromatography (GPC), and surface plasmon resonance (SPR) after dissociation of the biotin-streptavidin complex. This general approach is likely to be extended to other proteins and monomers and promises to enable easy synthesis and purification of a variety of polymer-protein conjugates.  相似文献   

15.
Surface plasmon resonance (SPR) spectroscopy is employed for the study of biotinylated DNA assembly on streptavidin modified gold surfaces for target DNA hybridization. Two immobilization strategies are involved for constructing streptavidin films, namely, (1) physical adsorption on biotin-containing thiol treated surfaces through biotin-streptavidin links and (2) covalent attachment to 11-mercaptoundecanoic acid (MUA) treated surfaces through amine coupling. To understand the structural properties of the streptavidin films, a quartz crystal microbalance with energy dissipation monitoring (QCM-D) is used to monitor the streptavidin immobilization procedures. The simultaneously measured frequency (Deltaf) and dissipation factor (DeltaD) changes, together with the SPR angle shifts (Deltatheta), suggest that the streptavidin film assembled on the biotin-containing surface is highly rigid with a well-ordered structure while the streptavidin film formed through amine coupling is highly dissipative and less structured. The subsequent biotinylated DNA (biotin-DNA) assembly and target hybridization results show that the streptavidin film structure has distinct effects on the biotin-DNA binding amount. On the streptavidin matrix, not only the probe DNA density but also the strand orientation mediated by the streptavidin films has distinct effects on hybridization efficiency. Particularly, the molecularly ordered streptavidin films formed on the biotin-containing surfaces ensure a well-ordered DNA assembly, which in turn allows for a higher efficiency in target DNA capture and for a higher sensitivity in the hybridization analysis when compared to the biotin-DNA assembled on the less structured streptavidin films formed through amine coupling.  相似文献   

16.
The simultaneous detection of multiple analytes is an important consideration for the advancement of biosensor technology. Currently, few sensor systems possess the capability to accurately and precisely detect multiple antigens. This work presents a simple approach for the functionalization of sensor surfaces suitable for multichannel detection. This approach utilizes self-assembled monolayer (SAM) chemistry to create a nonfouling, functional sensor platform based on biotinylated single-stranded DNA immobilized via a streptavidin bridge to a mixed SAM of biotinylated alkanethiol and oligo(ethylene glycol). Nonspecific binding is minimized with the nonfouling background of the sensor surface. A usable protein chip is generated by applying protein-DNA conjugates which are directed to specific sites on the sensor chip surface by utilizing the specificity of DNA hybridization. The described platform is demonstrated in a custom-built surface plasmon resonance biosensor. The detection capabilities of a sensor using this protein array have been characterized using human chorionic gonadotropin (hCG). The platform shows a higher sensitivity in detection of hCG than that observed using biotinylated antibodies. Results also show excellent specificity in protein immobilization to the proper locations in the array. The vast number of possible DNA sequences combine with the selectivity of base-pairing makes this platform an excellent candidate for a sensor capable of multichannel protein detection.  相似文献   

17.
Polyanionic glycopolymers were synthesized aiming at establishing a simple process for assembling glycosyl arrays. The synthetic glycopolymers carry the key carbohydrate epitopes of α-d-galactobioside (Gb2), β-lactoside, and α-d-mannopyranoside, each of which serves as a ligand of bacterial toxins and adhesion proteins. The Gb2 epitope, prepared from penta-O-acetyl-d-galactopyranose, was coupled with poly(ethylene-alt-maleic anhydride) in a polymer reaction to afford a Gb2-embedded glycopolymer having also carboxylate (COO) polyanions at the side chain. The polyanionic glycopolymer was then applied to a preparation of sugar-coated gold electrodes, which involves an alternating layer-by-layer adsorption based on electrostatic interactions. The presence of the Gb2-coat on the surface was evidenced by Fourier transform infrared reflection absorption spectroscopy. The Gb2-coated glyco-chip was stable in 10 mM HEPES buffer containing 150 mM NaCl aq. Other glycopolymers carrying the β-lactoside and α-d-mannopyranoside epitopes were applied to the same assembling process. The derived glycosyl arrays will be useful for detecting Shiga toxins, other pathogenic toxins and viruses when applied as glyco-chips for surface plasmon resonance or quartz crystal microbalance technique.  相似文献   

18.
利用自行设计组装的以白色发光二极管为光源的表面等离子体子共振传感器实验装置, 检测了不同材质包裹的磁性纳米粒子连接靶向DNA与生物素化DNA探针的结合程度. 结果表明, 与聚苯乙烯磁性微球连接的靶向DNA相比, Fe3O4@SiO2核壳式纳米微球连接的靶向DNA与生物素化的DNA探针结合速率较快, 且其相对标准偏差较小.  相似文献   

19.
Goluch ED  Shaw AW  Sligar SG  Liu C 《Lab on a chip》2008,8(10):1723-1728
We report a microfluidic method for precisely patterning lipid bilayers and a multiplexed assay to examine the interaction between the lipids and protein analytes. The lipids were packaged into nanoscale lipid bilayer particles known as Nanodiscs and delivered to surfaces using microfluidic channels. Two types of lipids were used in this study: biontinylated lipids and phosphoserine lipids. The deposition of biotinylated lipids on a glass surface was confirmed by attaching streptavidin coated quantum dots to the lipids, followed by fluorescent imaging. Using this multiplexed grid assay, we examined binding of annexin to phosphoserine lipids, and compared these results to similar analysis performed by surface plasmon resonance.  相似文献   

20.
It is well-known that protein-modified implant surfaces such as TiO(2) show a higher bioconductivity. Fibronectin is a glycoprotein from the extracellular matrix (ECM) with a major role in cell adhesion. It can be applied on titanium oxide surfaces to accelerate implant integration. Not only the surface concentration but also the presentation of the protein plays an important role for the cellular response. We were able to show that TiO(X) surfaces modified with biotinylated fibronectin adsorbed on a streptavidin-silane self-assembly multilayer system are more effective regarding osteoblast adhesion than surfaces modified with nonspecifically bound fibronectin. The adsorption and conformation behavior of biotinylated and nonbiotinylated (native) fibronectin was studied by surface plasmon resonance (SPR) spectroscopy and atomic force microscopy (AFM). Imaging of the protein modification revealed that fibronectin adopts different conformations on nonmodified compared to streptavidin-modified TiO(X) surfaces. This conformational change of biotinylated fibronectin on the streptavidin monolayer delivers a fibronectin structure similar to the conformation inside the ECM and therefore explains the higher cell affinity for these surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号