首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 419 毫秒
1.
蛋白质在表面活性剂与高分子共组双水相体系中 的分配   总被引:4,自引:0,他引:4  
肖进新  黄建滨  何煦  暴艳霞   《化学学报》2000,58(7):922-924
高分子和正负离子表面活性剂混合物可形成一种新型双水相体系。研究蛋白质在溴化十二烷基三乙铵/十二烷基硫酸钠与聚氧乙烯(EO)-聚氧丙烯(PO)嵌段共聚物(EO~2~0PO~8~0)共组双水相体系中的分配。通过在高分子接上亲和配基,研究蛋白质在带有亲和配基高分子的双水相体系中的分配。将表面活性剂富集相稀释或加热高分子富集相,又可形成新的双水相体系,由此可进行蛋白质的多步分配。在蛋白质的分配完成之后,通过将表面活性剂富集相进一步稀释或将高分子富集相加热至高分子浊点以上可将表面活性剂和高分子与目标蛋白质分离。正负离子表面活性剂和高分子还可以循环使用。  相似文献   

2.
The phase transition between unimer and micellar phases of poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (PEO–PPO–PEO) triblock copolymer Pluronic P105 in aqueous solution has been investigated as a function of temperature using Fourier transform infrared spectroscopy. The transition of 8 wt% Pluronic P105 in aqueous solution was found to occur at 25 °C. As temperature increases, PO blocks appear to be stretched conformers with strong interchain interaction, and the formation of a hydrophobic core in the micellar phase. The EO chains are found to change to a more disordered structure with low-chain packing density from the unimer phase to the micellar phase. Both the EO and PO blocks exhibit dehydration during the phase transition. Received: 17 September 1998 Accepted in revised form: 10 December 1998  相似文献   

3.
The phase behavior (temperature vs composition) and microstructure for the two binary systems Pluronic 25R4 [(PO)19(EO)33(PO)19]-water and Pluronic 25R2 [(PO)21(EO)14(PO)21]-water have been studied by a combined experimental approach in the whole concentration range and from 5 to 80 degrees C. The general phase behavior has been identified by inspection under polarized light. Precise phase boundaries have been determined by analyzing 2H NMR line shape. The identification and microstructural characterization of the liquid crystalline phases have been achieved using small-angle X-ray scattering (SAXS). The isotropic liquid solution phases have been investigated by self-diffusion measurements (PGSE-NMR method). 25R2 does not form liquid crystals and is miscible with water in the whole concentration range; with increasing temperature, the mixtures split into water-rich and a copolymer-rich solutions in equilibrium. 25R4 shows rich phase behavior, passing, with increasing copolymer concentration, from a water-rich solution to a lamellar and copolymer-rich solution. A small hexagonal phase, completely encircled in the stability region of the water-rich solution, is also present. In water-rich solutions, at low temperatures and low copolymer concentrations, the copolymers are dissolved as independent macromolecules. With increasing copolymer concentrations an interconnected network of micelles is formed in which micellar cores of hydrophobic poly(propylene oxide) are interconnected by poly(ethylene oxide) strands. In copolymer-rich solutions water is molecularly dissolved in the copolymer. The factors influencing the self-aggregation of Pluronic R copolymers (PPO-PEO-PPO sequence) are discussed, and their behavior in water is compared to that of Pluronic copolymers (PEO-PPO-PEO sequence).  相似文献   

4.
The phase behavior of anionic microemulsions composed of water, sodium dodecyl sulfate (SDS), dodecane, and short propyleneglycol monoalkyl ethers (C(n)()PO(m)(); n = 3, m = 1 and n = 4, m = 2, 3) is studied. From the pseudoternary phase diagrams, it is inferred that C(n)()PO(m)() compounds have cosurfactant behaviors comparable to those of 1-butanol and 1-pentanol, which are the most efficient and widely used cosurfactants. In contrast to these alcohols, the C(n)()PO(m)() cosurfactants induce high temperature dependences in the SDS microemulsion systems. Furthermore, SDS/C(n)()PO(m)() microemulsions can be formed with small SDS concentrations (SDS/C(4)PO(3) mass ratio of 1/6.26). These have a low toxicity in contrast to systems containing genotoxic short ethyleneglycol ethers (C(n)()EO(m)()) as the cosurfactant. The strong temperature dependence can be favorable in the recovery of reaction products when the microemulsion is used either as a reaction medium or in extraction processes.  相似文献   

5.
The phase behavior of systems consisting of water/n-hexane/polyethoxylated nonionic surfactants with a normal distribution of ethylene oxide (EO) chain length has been investigated. The surfactants used were octylphenol ethoxylated with eight EO units and nonylphenol ethoxylated with seven and ten EO units. The oil/water weight ratio was keep constant at 1, whereas the amount of surfactant and the temperature were variables. The pseudobinary phase diagrams were used to find out the triphasic bodies on the temperature scale, the tricritical points and the effect of electrolyte on them. The presence of electrolyte and the increase in surfactant hydrophobicity promote the phase inversion.  相似文献   

6.
In this study we present a new aqueous two-phase system where both polymers are thermoseparating. In this system it is possible to recycle both polymers by temperature induced phase separation, which is an improvement of the aqueous two-phase system previously reported where one of the polymers was thermoseparating and the other polymer was dextran or a starch derivative. The polymers used in this work are EO50PO50, a random copolymer of 50% ethylene oxide (EO) and 50% propylene oxide (PO), and a hydrophobically modified random copolymer of EO and PO with aliphatic C14H29-groups coupled to each end of the polymer (HM-EOPO). In water solution both polymers will phase separate above a critical temperature (cloud point for EO50PO50 50 degrees C, HM-EOPO, 14 degrees C) and this will for both polymers lead to formation of an upper water phase and a lower polymer enriched phase. When EO50PO50 and HM-EOPO are mixed in water, the solution will separate in two phases above a certain concentration i.e. an aqueous two-phase system is formed analogous to poly(ethylene glycol) (PEG)/dextran system. The partitioning of three proteins, bovine serum albumin, lysozyme and apolipoprotein A-1, has been studied in the EO50PO50/HM-EOPO system and how the partitioning is affected by salt additions. Protein partitioning is affected by salts in similar way as in traditional PEG/dextran system. Recombinant apolipoprotein A-1 has been purified from a cell free E. coli fermentation solution. Protein concentrations of 20 and 63 mg/ml were used, and the target protein could be concentrated in the HM-EOPO phase with purification factors of 6.6 and 7.3 giving the yields 66 and 45%, respectively. Recycling of both copolymers by thermoseparation was investigated. In protein free systems 73 and 97.5% of the EO50PO50 and HM-EOPO polymer could be recycled respectively. Both polymers were recycled after aqueous two-phase extraction of apolipoprotein A-1 from a cell free E. coli fermentation solution. Apolipoprotein A-1 was extracted to the HM-EOPO phase with contaminating proteins in the EO50PO50 phase. The yield (78%) and purification factor (5.5) of apolipoprotein A-1 was constant during three polymer recyclings. This new phase system based on two thermoseparating polymers is of great interest in large scale extractions where polymer recycling is of increasing importance.  相似文献   

7.
Synthetic (co)polymers or (co)oligomers with two (or more) repeating groups show not only molar mass distribution, but also composition and sequence distribution of the individual repeat units. To characterize such two- (or more-) dimensional distribution, liquid chromatography under "critical conditions" has been suggested, where the separation according to one type of repeating units is suppressed by balancing the adsorption and the size-exclusion effects. In present work it is shown that by combination of adequately selected separation conditions in normal-phase and in reversed-phase systems, the two-dimensional distribution mode can be adjusted to result in the separation following the distribution of any of the two repeat units in ethylene oxide-propylene oxide block (co)oligomers. Based on the retention mechanism suggested, prediction and optimization of the conditions for isocratic and gradient-elution separations of (co)oligomers is possible. HPLC-MS with atmospheric-pressure chemical ionization is a valuable tool for unambiguous identification of the individual (co)oligomers and their tracking in course of method development. Gradient elution can be used for the separation and characterization of block (co)oligomers of ethylene oxide (EO) and propylene oxide (PO) according to the number of the units in one block, while the separation according to the distribution of the units in the other block is suppressed. The effects of the arrangement of the individual EO and PO blocks in the block (co)oligomers (the sequence distribution) affects significantly the retention behavior and the selection of the optimum separation conditions.  相似文献   

8.
The potential of N,N-dimethylacrylamide-piperazine diacrylamide-based monolithic stationary phases bearing sulfonic acid groups for electroosmotic flow generation is investigated for the separation of positively charged amino acids and peptides. The capillary columns were used under electrochromatographic but also under purely chromatographic (nano-HPLC) conditions and the separations interpreted as the result of possible chromatographic and electrophoretic contributions. The stationary phases were found to be mechanically stable up to pressures of 190 bar and chemically stable towards a wide variety of organic and hydro-organic mobile phases. In order to investigate the retention mechanism, the salt concentration and the organic solvent content of the (hydro-)organic mobile phase were varied in a systematic manner, taking three aromatic amino acids (phenylalanine, tryptophan, histidine) as model analytes. The respective contributions of electrostatic and hydrophobic and/or hydrophilic interactions were further investigated by varying the charge density and the hydrophobicity of the standard stationary phase. The former was done by varying the amount of charged monomer (vinylsulfonic acid) added during synthesis, the latter by (partially) replacing the interactive monomer (N,N-dimethylacrylamide) by other more hydrophobic monomers. A mixed mode retention mechanism based primarily on electrostatic interactions modified in addition by "hydrophilic" ones seems most suited to interpret the behavior of the amino acids, which stands in contradistinction to the previously investigated case of the behavior of neutral analytes on similar stationary phases. Finally the separation of small peptides was investigated. While the separation of Gly-Phe and Gly-Val was not possible, the separation of Phe-Gly-Phe-Gly and Gly-Phe but also of the closely related Gly-His and Gly-Gly-His could be achieved.  相似文献   

9.
This study represents the first time that both the mobile phase composition and the temperature are simultaneously controlled to examine silica-bonded octadecylsilyl (C18) ligands spectroscopically at typical liquid chromatographic (LC) mobile phase flow-rates and back-pressures. Raman spectroscopy is used to characterize the behavior of the C18 bonded ligands equilibrated at temperatures from 45 to 2 degrees C in neat, single-component, mobile phase solvents including: water, acetonitrile, methanol, and chloroform. In addition, the effect of stationary phase ligand bonding density is examined by using two different monomeric reversed-phase liquid chromatographic (RPLC) stationary phases, a 2.34 and a 3.52 micromol m(-2) Microporasil C18 stationary phase, under identical conditions. The direct, on-column, spectroscopic analysis used in this study allows direct evaluation of the temperature-dependent behavior of the bonded C18 ligands. The temperature-dependent ordering of the stationary phase ligands is examined to determine if the ligands undergo a phase transition from a less-ordered "liquid-like" state at higher temperatures to a more-ordered "solid-like" state at lower temperatures. A discrete phase transition was not observed, but rather a continual ordering as temperature was lowered.  相似文献   

10.
沈之荃 《应用化学》1992,9(3):76-78
用过渡金属络合催化剂聚合环氧氯丙烷能获高分子量的聚合物。稀土络合催化剂对环氧乙烷,环氧丙烷及环硫丙烷的开环聚合具有明显效果。本文选用Y(acac)_3-H_2O-Al(i-Bu)_3催化剂,考察环氧氯丙烷的均聚合及其与环氧乙烷,环氧丙烷的共聚合,并用核  相似文献   

11.
The mixed micellar system comprising the poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)-based triblock copolymer (EO)(20)(PO)(70)(EO)(20) (P123) and the anionic surfactant sodium dodecyl sulfate (SDS) has been investigated in aqueous media by small-angle neutron scattering (SANS) and viscosity measurements. The aggregation number of the copolymer in the micelles decreases upon addition of SDS, but a simultaneous enhancement in the degree of micellar hydration leads to a significant increase in the micellar volume fraction at a fixed copolymer concentration. This enhancement in the micellar hydration leads to a marked increase in the stability of the micellar gel phase until it is destroyed at very high SDS concentration. Mixed micellar systems with low and intermediate SDS concentrations form the micellar gel phase in much wider temperature and copolymer concentration ranges than the pure copolymer micellar solution. A comparison of the observed results with those for the copolymers (EO)(26)(PO)(40)(EO)(26) (P85) and (EO)(99)(PO)(70)(EO)(99) (F127) suggests that the composition of the copolymers plays a significant role in determining the influence of SDS on the gelation characteristics of the aqueous copolymer solutions. Copolymers with high PO/EO ratios show an enhancement in the stability of the gel phase, whereas copolymers with low PO/EO ratios show a deterioration of the same in the presence of SDS.  相似文献   

12.
In this study, the retention and selectivity of a mixture of basic polar drugs were investigated in hydrophilic interaction chromatographic conditions (HILIC) using nano-liquid chromatography (nano-LC). Six sympathomimetic drugs including ephedrine, norephedrine, synephrine, epinephrine, norepinephrine and norphenylephrine were separated by changing experimental parameters such as stationary phase, acetonitrile (ACN) content, buffer pH and concentration, column temperature. Four polar stationary phases (i.e. cyano-, diol-, aminopropyl-silica and Luna HILIC, a cross-linked diol phase) were selected and packed into fused silica capillary columns of 100 μm internal diameter (i.d.). Among the four stationary phases investigated a complete separation of the all studied compounds was achieved with aminopropyl silica and Luna HILIC stationary phases only. Best chromatographic results were obtained employing a mobile phase composed by ACN/water (92/8, v/v) containing 10 mM ammonium formate buffer pH 3. The influence of the capillary temperature on the resolution of the polar basic drugs was investigated in the range between 10 and 50 °C. Linear correlation of ln k vs. 1/T was observed for all the columns; ΔH° values were negative with Luna HILIC and positive with aminopropyl- and diol-silica stationary phases, demonstrating that different mechanisms were involved in the separation.To compare the chromatographic performance of the different columns, Van Deemter curves were also investigated.  相似文献   

13.
以2-溴异丁酰溴为引发剂,CuCl/CuC12/Me6TREN为催化体系,在室温条件下采用原子转移自由基聚合(ATRP)法将单体6-O-甲基丙烯酰基-1,2,3,4-双-O-亚异丙基-α-D-吡喃半乳糖苷(6-O-methacryloyl-1,2,3,4-di-O-isopropylidene-α-D-galactop...  相似文献   

14.
Supramolecular self-assembly of a host molecule with selected blocks of triblock copolymers enabled the formation of inclusion 2D nanocrystals that connect consecutive copolymer chains. Indeed, the selective inclusion of ethylene oxide (EO) blocks in inclusion crystals and the phase segregation of PO blocks of poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) (EO(n)PO(m)EO(n)) triblock copolymers provide an efficient route to create alternated crystalline lamellae and amorphous layers, forming a well-organized material. The spontaneous formation of the supramolecular architectures was realized by a solvent-free mechanochemical approach or by thermal treatment of the copolymer and host (tris-o-phenylenedioxycyclotriphosphazene), as demonstrated by in situ synchrotron X-ray diffraction. The driving force for the fabrication of crystalline inclusion compounds with selected EO segments is based on the establishment of cooperative noncovalent intermolecular interactions, while steric effects prevent the formation of the inclusion crystal with the remaining PO blocks. The 2D (1)H-(13)C solid state and fast-(1)H MAS NMR provide direct evidence of the intimate interactions between the host and EO block and the topology of the block copolymer in the material. The large magnetic susceptibility generated by the aromatic host nanochannels surrounding the included EO chains was interpreted by ab initio calculations (HF-GIAO/DGDZVP) that carefully reproduce the chemical shifts associated with the effects of guest-host interactions. The theoretical calculations enable the measurement of short intermolecular distances between the host and the target block, demonstrating the existence of a diffuse network of multiple CH···π host-guest interactions that improve the robustness of the supramolecular architecture. The overall evidence enforces the strategy of combining the use of block copolymers and clathrate-forming molecules to fabricate organized materials through noncovalent interactions.  相似文献   

15.
Copolymerization of propylene oxide (PO) and ethylene oxide (EO) using double metal cyanide (DMC) complexas the catalyst was carried out. The structure of random copolymers was confirmed by ~(13)C-NMR and IR spectra. ~1H-NMRanalysis shows that the EO content in the copolymer is the same as that in the initial monomer feed. Moderate molecularweight copolymers with various EO content were obtained and their values of molecular weigh distribution (MWD) fell inthe range of 1.21-1.55. It was found that the molecular weight of copolymers is controlled by the mass ratio of EO + PO toinitiator moles used. The reaction rate as well as polymer yield decrease with increasing EO content in the feed composition.  相似文献   

16.
新型苯基桥键色谱固定相的热力学性质   总被引:1,自引:0,他引:1  
Wu L  Lian D  Zhang Q  Li H 《色谱》2010,28(7):693-696
将制备的球形苯基桥键型杂化介孔色谱固定相与商品化的C18和苯基键合硅胶固定相对比,研究其热力学性质。以稠环芳烃为例,探讨了溶质在固定相和流动相之间的迁移焓变、迁移熵变等热力学参数的变化。结果表明,与两种商品化的固定相不同,实验制备的苯基桥键固定相不存在明显的焓-熵补偿效应,证实新型桥键固定相分离机理是疏水作用、π-π作用、包结作用等协同作用的结果。  相似文献   

17.
The present study used calorimetric techniques to follow the interaction of random and block ethylene oxide (EO)-propylene oxide (PO) copolymers with ionic surfactants. Features such as the intensity of the interaction (evaluated through their critical aggregation concentrations) and the profile of the isothermal titration calorimetry (ITC) curves were comparatively analyzed for random and block copolymers with similar composition (number of EO and PO units). Random copolymers displayed an interaction similar to that observed with other hydrophilic homopolymers with the additional characteristic that the intensity of the interaction increased with the increase in the copolymer hydrophobicity (as determined by its PO content), revealing that these copolymers display an intermediate behavior between PEO and PPO. For nonaggregated block copolymers (unimers) with large enough EO blocks (molar mass above 2000 g mol-1), ITC curves revealed that the anionic surfactant sodium dodecylsulfate (SDS) interacts with the PO and EO blocks almost independently, being more favorable with the PO block, which controls the critical aggregation concentration (cac) value. Effects of temperature and of the nature of the ionic surfactants on their interaction with these copolymers were found to agree with the previously reported trends.  相似文献   

18.
In this study the temperature stability of several normal phase and RP columns was investigated using a water-only mobile phase. The temperature was adjusted to 120 degrees C for the bare silica stationary phases and to 185 degrees C for the metal oxide and carbon stationary phases. It could be shown that metal oxide stationary phases exhibited excellent thermal stability over the duration of the test period and are therefore suitable for high temperature LC applications.  相似文献   

19.
Apparent molar volumes (V Φ) of aqueous solutions of some copolymers, based on ethylene oxide (EO) and propylene oxide (PO) units, were determined as functions of concentration at three temperatures. Viscosity measurements were also carried out on some of these systems. The effects studied include how the molecular architecture and the molecular weight affect the aggregation of the copolymer, keeping constant the EO/PO ratio. Modeling of the volumetric data yielded the partial molar volume of the copolymer in the standard (V°) and the aggregated (V M) states, as well as the equilibrium constant for micellization and the aggregation number. Analysis of the viscosity data supported the insights obtained by modeling of the volumetric data. At a given temperature, both V° and V M, normalized for the number of the EO and the PO units, are linearly related to the fraction of the EO in the copolymer, regardless of the copolymer nature. These correlations are powerful tools for predicting values of both V° and V M for copolymers not yet investigated. For macromolecules having the same molecular architecture, the standard Gibbs free energies of micellization () are slightly negative within the errors of their determination, and are hardly affected by temperature changes. Also, their aggregation numbers are small. From the quantitative analysis of the viscosity data, insights were obtained that corroborated the thermodynamic findings. Finally, values of , normalized for the EO and the PO units, show that the same driving forces control the self-assembling processes for copolymers having different molecular weight but the same EO/PO ratio.  相似文献   

20.
The solvation parameter model is used to study the influence of temperature and composition on the selectivity of nine poly(siloxane) and two poly(ethylene glycol) stationary phase chemistries for open-tubular column gas chromatography. A database of system constants for the temperature range 60-140 degrees C was constructed from literature values with additional results determined for HP-50+, DB-210, DB-1701, DB-225 and SP-2340 columns. The general contribution of monomer composition (methyl, phenyl, cyanopropyl, and trifluoropropyl substituents) on the capacity of poly(siloxane) stationary phases for dispersion, electron lone pair, dipole-type and hydrogen-bond interactions is described. The selectivity coverage of the open-tubular column stationary phases is compared with a larger database for packed column stationary phases at a reference temperature of 120 degrees C. The open-tubular column stationary phases provide reasonable coverage of the range of dipole-type and hydrogen-bond base interactions for non-ionic packed column stationary phases. Deficiencies are noted in the coverage of electron lone pair interactions. None of the open-tubular column stationary phases are hydrogen-bond acids. The system constants are shown to change approximately linearly with temperature over the range 60-140 degrees C. The intercepts and slopes of these plots are used to discuss the influence of temperature on stationary phase selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号