首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
采用5种方法,即溶胶-凝胶法、高温固相法、共沉淀法、水热法和溶剂热法合成了富锂材料Li1.2Mn0.6Ni0.2O2。拉曼光谱研究发现共沉淀法制备的样品是固溶体结构,而其他4个样品是以不同尺度共生形成的复合物结构。电化学性能测试结果表明这5个富锂材料性能存在明显差异,尤其是在首次充电过程中5个样品位于4.5 V以上由Li2MnO3组分活化所贡献的容量明显不同,共沉淀法制备的具有固溶体结构的样品中由Li2MnO3组分活化贡献的容量最多。因此我们建立起电化学性能与两相集成方式的联系,不同的集成方式使得Li2MnO3组分活化所贡献的容量不同,进而影响了最终的电化学性能。  相似文献   

2.
采用喷雾干燥法结合后续的热处理,成功地制备了一系列新型的基于富锂层状固溶体Li_2MnO_3和Li[Ni_(0.8)Co_(0.15)Al_(0.05)]O_2结合的xLi_2MnO_3-(1-x)Li[Ni_(0.8)Co_(0.15)Al_(0.05)]O_2(0.5≤x≤0.8)材料,并对其晶体结构、表面形貌、元素价态以及电化学性能进行了一系列的研究。实验结果表明,随着x值的增大,材料的晶体结构逐渐从层状的Li[Ni_(0.8)Co_(0.15)Al_(0.05)]O_2过渡到类Li_2MnO_3结构。对样品进行淬火处理对晶粒的微观晶体结构和元素价态产生复杂影响,这种变化使得淬火的样品表现出较好的电化学性能。其中x=0.6的样品淬火后表现出较好的电化学性能,100次循环后可逆容量可达209 mAh·g~(-1)。  相似文献   

3.
《电化学》2016,(3)
采用共沉淀的方法,以过渡金属硫酸盐为起始物质制备了一系列不同组成的富锂锰基正极材料xLi_2MnO_3·(1-x)LiMn_(1/3)Ni_(1/3)Co_(1/3)O_2(x=0.3,0.5,0.7),通过XRD、Rietveld精修等物理手段比较了不同组成材料的结构特征.通过对比不同比例材料的首周库仑效率、放电可逆容量、循环性能、电压降现象及不同温度下各比例富锂材料的倍率表现等电化学性能,确定0.5Li_2MnO_3·0.5LiMn_(1/3)Ni_(1/3)Co_(1/3)O_2为该系列材料的最优比例.然后采用原位X射线吸收谱技术,对富锂材料在首周活化过程中的机理进行了研究.同步辐射结果表明,在首周充电过程中,镍和钴的价态分别从+2、+3价氧化到+4价,而对于锰来讲,虽然在富锂锰基材料活化的过程中其周围的局域电子结构发生了一定的变化,但是其化合价始终维持在+4价没有发生变化.  相似文献   

4.
以乙酸盐(乙酸锂、乙酸钠、乙酸钴、乙酸镍、乙酸锰等)为原材料,采用球磨辅助高温固相法制备Li_(1.0)Na_(0.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_2正极材料。借助XRD、SEM等表征材料的结构和形貌,利用循环伏安、恒流充放电、交流阻抗等方法研究材料的电化学性能。结果表明,钠的掺杂导致颗粒表面光滑度降低,形成Na_(0.77)Mn O_(2.05)新相。0.05C活化过程中,掺钠样品和未掺钠样品首次放电比容量分别为258.4 m Ah·g~(-1)和215.8 m Ah·g~(-1),库伦效率分别为75.2%和72.8%;2C放电比容量分别为116.3 m Ah·g~(-1)和106.2 m Ah·g~(-1)。研究发现,掺钠可减小首次充放电过程的不可逆容量,提高容量保持率;改善倍率性能与容量恢复特性;降低SEI膜阻抗和电荷转移阻抗;掺钠后样品首次循环就可以基本完成Li_2Mn O_3组分向稳定结构的转化,而未掺杂的样品需要两次循环才能逐步完成该过程;XPS结果表明,掺钠样品中Ni~(2+)、Co~(3+)、Mn~(4+)所占比例明显提高,改善了样品的稳定性和电化学性能;循环200次后的XRD结果表明掺钠与未掺钠材料在脱嵌锂反应中的相变化过程基本一致,良好有序的层状结构遭到破坏是循环过程中容量衰减的主要原因。  相似文献   

5.
以LiOH.H2O、Mn(CH3COO)2.4H2O和Ni(CH3COO)2.4H2O为原料,分别用柠檬酸(CA)与乙二胺四乙酸(EDTA)为配位剂,采用溶胶凝胶法结合固相烧结法制备富锂固溶体正极材料Li[Li0.2Ni0.2Mn0.6]O2。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、激光粒度仪对所得样品的结构、形貌、粒径分布进行了表征,并测试了材料的电化学性能。采用CA配位制备的材料的电化学性能优于用EDTA配位制备的材料的电化学性能,室温下以18 mA.g-1的电流密度,在2.0~4.8 V电压范围内充放电,用CA制备的材料首次充电比容量高达324 mAh.g-1,首次库伦效率达82%;在180 mA.g-1的电流下,其可逆比容量保持在120 mAh.g-1。  相似文献   

6.
采用溶胶-凝胶法制备了一系列富锂锰基正极材料xLi2MnO3?(1-x)LiNi0.5Mn0.5O2(x=0.1-0.8),通过X射线衍射(XRD)仪,扫描电子显微镜(SEM)和电化学测试等检测手段表征了所得样品的晶体结构与电化学性能,研究了不同组分下富锂材料的结构与电化学性能.结果表明:Li2MnO3组分含量较高时,材料的首次放电容量较高,但循环稳定性较差;该组分含量较少时,所得样品中出现尖晶石杂相,且放电容量较低,但循环稳定性较好;综合来看,x=0.5时材料的电化学性能最优.x=0.4,0.6时材料也表现出了较好的电化学性能,值得关注.  相似文献   

7.
富锂正极材料Li[Li0.2Mn0.4Fe0.4]O2的表面包覆改性   总被引:1,自引:1,他引:0  
王洪  张伟德 《应用化学》2013,30(6):705-709
用共沉淀法合成了富锂正极材料Li[Li0.2Mn0.4Fe0.4]O2,并对其表面进行Al2O3包覆。采用XRD、SEM和电化学测试等方法对样品进行表征。结果表明,与Li[Li0.2Mn0.4Fe0.4]O2相比,包覆改性后的Li[Li0.2Mn0.4Fe0.4]O2具有较好的电化学性能,其初始放电容量未明显降低,而循环寿命大大提高,4.0%Al2O3包覆处理的富锂正极材料经50次充放电循环后,容量衰减量在9%左右。  相似文献   

8.
以共沉淀法制备的[Mn0.54Ni0.13Co0.13]1.25CO3为前驱体,配锂焙烧获得了富锂锰基固溶体Li[Li0.2Mn0.54Ni0.13Co0.13]O2,然后分别用柠檬酸、柠檬酸三铵对该材料进行表面预处理。结果表明经柠檬酸(铵)处理后,Li[Li0.2Mn0.54Ni0.13Co0.13]O2中分别有16.37wt%和13.14wt%的锂被化学脱出。充放电测试结果表明,表面处理后的样品首次效率有了较大的提高(由63.5%分别提高到了80.2%和80.7%),0.2C循环40次容量保持率分别由91.43%提高到97.42%和92.72%,1C容量由处理前的149.5 mAh.g-1提高到179.5mAh.g-1和181.5 mAh.g-1,表明处理后材料的循环性能和倍率性能都得到了改善。这主要是由于柠檬酸(铵)处理,预先脱出了Li2MnO3组分中的部分Li2O,并在材料表面生成了类尖晶石结构的材料。  相似文献   

9.
不同方法制备的CeO2-ZrO2体系结构研究   总被引:2,自引:1,他引:1  
采用不同方法制备了几种CeO2-ZrO2二元氧化物体系,并用XRD、BET、XPS等技术研究了各个体系中氧化铈与氧化锆的存在状态.结果表明以773K焙烧过的氧化锆为载体,浸渍Ce(NO3)3溶液制得的CeO2/ZrO2体系中,氧化铈单层分散于氧化锆的表面,分散阈值约为0.03gCeO2/gZrO2.以水合氧化锆为载体,浸渍Ce(NO3)3溶液制得CeO2-ZrO2固溶体,但用此法制备的固溶体样品与用共沉淀法制备的样品不同.共沉淀法得到的是均一固溶体,浸渍法得到的是富锆固溶体和富铈固溶体的混合物;而且浸渍法制备的样品表面Ce/Zr原子比高,热稳定性好.  相似文献   

10.
富锂层状氧化物作为锂离子电池正极材料具有高比容量优势.采用草酸盐共沉淀法制备Li(Li0.22Ni0.17Mn0.61)O2,并用YF3包覆电极.采用X射线衍射(XRD)、扫描电子显微镜(SEM)和X射线能谱分析(EDS)表征材料结构、观察材料形貌.结果表明,材料颗粒尺寸在100~200 nm范围,YF3包覆不会改变材料结构和形貌.电化学恒流充放电测试表明,YF3包覆Li(Li0.22Ni0.17Mn0.61)O2电极的比容量,尤其倍率比容量明显提高.60 mA·g-1电流密度下包覆电极材料30周循环后其比容量保持在220 mAh·g-1以上,1500 mA·g-1电流密度下其比容量仍可达150 mAh·g-1.电化学阻抗谱(EIS)测试结果表明,YF3包覆电极电荷转移电阻和扩散阻抗均明显降低,有利于电化学性能改善.  相似文献   

11.
郑杰允  汪锐  李泓 《物理化学学报》2001,30(10):1855-1860
采用固相烧结法制备了纯相Li2MnO3正极材料及靶材,采用脉冲激光沉积(PLD)法在氧气气氛、不同温度下沉积了Li2MnO3薄膜. 通过X射线衍射(XRD)和拉曼(Raman)光谱表征了薄膜的晶体结构,采用扫描电镜(SEM)观察薄膜形貌及厚度,利用电化学手段测试了Li2MnO3薄膜作为锂离子电池正极材料性能. 结果表明,PLD 方法制备的纯相Li2MnO3薄膜随着沉积温度升高薄膜结晶性变好. 25 ℃沉积的薄膜难以可逆充放电,400 ℃沉积的薄膜具有较高的电化学活性和循环稳定性. 相对于粉末材料,400与600 ℃制备的Li2MnO3薄膜电极平均放电电位随着循环次数的衰减速率明显低于相应的粉体材料.  相似文献   

12.
以乙酸盐(乙酸锂、乙酸钠、乙酸钴、乙酸镍、乙酸锰等)为原材料,采用球磨辅助高温固相法制备Li1.0Na0.2Ni0.13Co0.13Mn0.54O2正极材料。借助XRD、SEM等表征材料的结构和形貌,利用循环伏安、恒流充放电、交流阻抗等方法研究材料的电化学性能。结果表明,钠的掺杂导致颗粒表面光滑度降低,形成Na0.77MnO2.05新相。0.05C活化过程中,掺钠样品和未掺钠样品首次放电比容量分别为258.4 mAh·g-1和215.8 mAh·g-1,库伦效率分别为75.2%和72.8%;2C放电比容量分别为116.3 mAh·g-1和106.2 mAh·g-1。研究发现,掺钠可减小首次充放电过程的不可逆容量,提高容量保持率;改善倍率性能与容量恢复特性;降低SEI膜阻抗和电荷转移阻抗;掺钠后样品首次循环就可以基本完成Li2MnO3组分向稳定结构的转化,而未掺杂的样品需要两次循环才能逐步完成该过程;XPS结果表明,掺钠样品中Ni2+、Co3+、Mn4+所占比例明显提高,改善了样品的稳定性和电化学性能;循环200次后的XRD结果表明掺钠与未掺钠材料在脱嵌锂反应中的相变化过程基本一致,良好有序的层状结构遭到破坏是循环过程中容量衰减的主要原因。  相似文献   

13.
应用简单的高温固相烧结法合成了Ti掺杂改性的Li2MnO3材料。电子扫描显微镜、X射线衍射以及X射线光电子能谱分析表明Ti元素取代Mn离子掺入到Li2MnO3晶格中,且掺杂能有效地抑制一次颗粒的团聚。电化学阻抗和恒流充放电测试结果表明,在2.0~4.6 V的电压窗口下,掺杂改性的样品Li2Mn0.9Ti0.03O3的首圈放电比容量达到209 mAh·g-1,库仑效率为99.5%,循环40圈后容量保持率为94%;当电流密度增大到400 mA·g-1时,掺杂改性的样品仍然可以放出120 mAh·g-1比容量,远高于同等电流密度下未掺杂的Li2MnO3原粉的比容量(52 mAh·g-1)。Ti掺杂可有效地改善Li2MnO3的循环稳定性和倍率性能,有利于促进该材料的商业化应用。  相似文献   

14.
应用简单的高温固相烧结法合成了Ti掺杂改性的Li_2MnO_3材料。电子扫描显微镜、X射线衍射以及X射线光电子能谱分析表明Ti元素取代Mn离子掺入到Li_2MnO_3晶格中,且掺杂能有效地抑制一次颗粒的团聚。电化学阻抗和恒流充放电测试结果表明,在2.0~4.6 V的电压窗口下,掺杂改性的样品Li_2Mn_(0.97)Ti_(0.03)O_3的首圈放电比容量达到209 m Ah·g~(-1),库仑效率为99.5%,循环40圈后容量保持率为94%;当电流密度增大到400 m A·g~(-1)时,掺杂改性的样品仍然可以放出120 m Ah·g~(-1)比容量,远高于同等电流密度下未掺杂的Li_2MnO_3原粉的比容量(52 m Ah·g~(-1))。Ti掺杂可有效地改善Li_2MnO_3的循环稳定性和倍率性能,有利于促进该材料的商业化应用。  相似文献   

15.
运用共沉淀和元素化学沉积相结合的方法,制备出了具有Ag/C 包覆层的层状富锂固溶体材料Li[Li0.2Mn0.54Ni0.13Co0.13]O2. 通过X 射线衍射(XRD)、场发射扫描电子显微镜(SEM)、透射电子显微镜(TEM)、恒流充放电、循环伏安(CV),电化学阻抗谱(EIS)和X 射线能量散射谱(EDS)方法,研究了Ag/C 包覆层对Li[Li0.2Mn0.54Ni0.13Co0.13]O2电化学性能的影响. 结果表明,Ag/C 包覆层的厚度约为25 nm,Ag/C 包覆在保持了固溶体材料α-NaFeO2 六方层状晶体结构的前提下,显著地改善了Li[Li0.2Mn0.54Ni0.13Co0.13]O2 的电化学性能. 在2.0-4.8 V(vs Li/Li+)的电压范围内,首次放电(0.05C)容量由242.6 mAh·g-1提高到272.4 mAh·g-1,库仑效率由67.6%升高到77.4%;在0.2C倍率下,30 次循环后,Ag/C 包覆的电极材料容量为222.6 mAh·g-1,比未包覆电极材料的容量高出14.45%;包覆后的电极材料在1C下的容量仍为0.05C下的81.3%. 循环伏安及电化学交流阻抗谱研究表明,Ag/C包覆层抑制了材料在充放电过程中氧的损失,有效降低了Li[Li0.2Mn0.54Ni0.13Co0.13]O2颗粒的界面膜电阻与电化学反应电阻.  相似文献   

16.
采用两步固相反应合成了锂、铁双位掺杂的锂离子电池正极材料Li0.99Nb0.01Fe1-xMgxPO4/C(x=0,0.01,0.02,0.03,0.04)。通过X射线衍射(XRD)、扫描电镜(SEM)以及恒电流充放电测试,研究了复合材料的晶体结构、形貌以及电化学性能。实验结果表明,制备的Li0.99Nb0.01Fe1-xMgxPO4/C(x=0,0.01,0.02,0.03,0.04)为纯相,掺杂适量的Nb5+、Mg2+离子可减小材料的晶粒尺寸,当Nb离子掺杂量为1mol%、Mg离子掺杂量为3mol%时,Li0.99Nb0.01Fe0.97Mg0.03PO4/C的电化学性能最佳。室温下,0.2C、1C、2C、4C(1C=170mA·g-1)倍率充放电其首次放电比容量分别为153.7、149.7、144.6、126.4mAh·g-1,即使在8C倍率下放电其放电比容量也有92.2mAh·g-1,并表现出良好的循环性能。  相似文献   

17.
正交结构LixMnO2正极材料的合成及其电化学性能研究   总被引:3,自引:0,他引:3  
0引言随着社会的进步,人们对化学电源提出了高能量、长寿命、低成本、低环境污染的要求。1990年由日本Sony能源公司率先研制成功的锂离子电池可以部分满足上述要求,一经问世,便迅速在便携式电子设备、电动汽车等众多领域展示了广阔的应用前景,掀起了锂离子二次电池的研究热潮。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号