首页 | 本学科首页   官方微博 | 高级检索  
     检索      

非原位拉曼光谱区分富锂层状氧化物的集成结构:一种预测Li2MnO3活化程度的有效方法
引用本文:陈丹丹,李广社,范建明,李保云,张丹,冯涛,李国华,李莉萍.非原位拉曼光谱区分富锂层状氧化物的集成结构:一种预测Li2MnO3活化程度的有效方法[J].无机化学学报,2013,29(18).
作者姓名:陈丹丹  李广社  范建明  李保云  张丹  冯涛  李国华  李莉萍
作者单位:吉林大学, 无机合成与制备化学国家重点实验室, 长春 130012,吉林大学, 无机合成与制备化学国家重点实验室, 长春 130012,中国科学院福建物质结构研究所, 结构化学国家重点实验室, 福州 350002,吉林大学, 无机合成与制备化学国家重点实验室, 长春 130012,吉林大学, 无机合成与制备化学国家重点实验室, 长春 130012,吉林大学, 无机合成与制备化学国家重点实验室, 长春 130012,中国科学院福建物质结构研究所, 结构化学国家重点实验室, 福州 350002,吉林大学, 无机合成与制备化学国家重点实验室, 长春 130012
基金项目:国家自然科学基金(No.21025104,21271171,91022018)资助项目。
摘    要:采用5种方法,即溶胶-凝胶法、高温固相法、共沉淀法、水热法和溶剂热法合成了富锂材料Li1.2Mn0.6Ni0.2O2。拉曼光谱研究发现共沉淀法制备的样品是固溶体结构,而其他4个样品是以不同尺度共生形成的复合物结构。电化学性能测试结果表明这5个富锂材料性能存在明显差异,尤其是在首次充电过程中5个样品位于4.5 V以上由Li2MnO3组分活化所贡献的容量明显不同,共沉淀法制备的具有固溶体结构的样品中由Li2MnO3组分活化贡献的容量最多。因此我们建立起电化学性能与两相集成方式的联系,不同的集成方式使得Li2MnO3组分活化所贡献的容量不同,进而影响了最终的电化学性能。

关 键 词:锂离子电池  富锂正极材料  拉曼光谱  活化程度
收稿时间:2017/11/14 0:00:00
修稿时间:2018/1/25 0:00:00

Differentiating the Integrated Structure from Lithium Rich Layer Oxide by ex situ Raman Spectroscopy: an Effective Method to Predict the Activation of Li2MnO3
CHEN Dan-Dan,LI Guang-She,FAN Jian-Ming,LI Bao-Yun,ZHANG Dan,FENG Tao,LI Guo-Hua and LI Li-Ping.Differentiating the Integrated Structure from Lithium Rich Layer Oxide by ex situ Raman Spectroscopy: an Effective Method to Predict the Activation of Li2MnO3[J].Chinese Journal of Inorganic Chemistry,2013,29(18).
Authors:CHEN Dan-Dan  LI Guang-She  FAN Jian-Ming  LI Bao-Yun  ZHANG Dan  FENG Tao  LI Guo-Hua and LI Li-Ping
Institution:State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China,State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China,State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China,State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China,State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China and State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
Abstract:The Li1.2Mn0.6Ni0.2O2 cathode was prepared by five synthesis routes:sol-gel, high temperature solid, coprecipitation, hydrothermal and solvothermal method. The analysis of Raman spectrum shows that the co-precipitation sample is solid solution structure, while the other four samples are composite structures formed at different scales. The results of electrochemical tests for as-prepared samples show obviously different performance, especially the capacity from the activation of Li2MnO3 during the first charging process (>4.5 V). The co-precipitation sample with solid solution structure shows the highest capacity from the activation of Li2MnO3. Therefore, we can establish the connection between electrochemical performance and two-phase integration modes. Different integration modes affect the activation capacity of Li2MnO3, leading to different electrochemical properties.
Keywords:lithium ion battery  Li-rich cathode material  Raman spectrosopy  activation degree
点击此处可从《无机化学学报》浏览原始摘要信息
点击此处可从《无机化学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号