首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pluronics are triblock copolymers of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) with wide range of hydrophilic-lipophilic balance. In order to investigate the relationship between the chemical structures of Pluronics and the interfacial properties at the air-water interface by monolayer techniques, Pluronics L61, P65, F68, P84, P123, L35, and P105 were selected. Since cholesterol influenced substantially the molecular packing stage and the characteristics of cell membranes, the interactions between Pluronics and model cell membranes in the absence and presence of cholesterol were compared. The results of pi-A isotherms and surface elasticities of Pluronic monolayers indicated that the first and second transition like stage were mainly affected by the numbers of EO and PO monomers, respectively. Pluronics with higher hydrophobicities demonstrated larger surface activities and penetration abilities to dipalmitoylphosphatidylcholine (DPPC) monolayers, which might be due to hydrophobic interactions and van der Waals forces. In the presence of cholesterol, hydrogen bonding effects was supposed to exist between the 3beta-hydroxy group of cholesterol and ether oxygen of PEO chains, which led Pluronic F68, with the longest PEO chain herein, to exhibit significantly higher penetration ability. Our findings proposed a theoretical basis for selection of optimized drug carriers and the starting point for further investigations.  相似文献   

2.
F68, a triblock copolymer of the form poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide), is found to effectively seal damaged cell membranes. To better understand the molecular interaction between F68 and cells, we have modeled the outer leaflet of a cell membrane with a dipalmitoylphosphatidylcholine (DPPC) monolayer spread at the air-water interface and introduced poloxamer into the subphase. Subsequent interactions of the polymer with the monolayer either upon expansion or compression were monitored using concurrent Langmuir isotherm and fluorescence microscopy measurements. To alter the activity of the poloxamer, a range of subphase temperatures from 5 to 37 degrees C was used. Lower temperatures increase the solubility of the poloxamer in the subphase and therefore lessen the amount of material at the interface, resulting in a lower equilibrium spreading pressure. Additionally, changes in temperature affect the phase behavior of DPPC. Below the triple point, the monolayer is condensed at pertinent polymer insertion pressures; for temperatures immediately above the triple point, the monolayer is a heterogeneous mix of liquid expanded and condensed phase; for the highest temperature measured, the DPPC monolayer remains completely fluid. At all temperatures, F68 inserts into DPPC monolayers at its equilibrium spreading pressure. Upon compression of the monolayer, polymers are squeezed-out at surface pressures notably higher than those for insertion, with higher temperatures leading to a higher squeeze-out pressure. An increase in temperature decreases the solvent quality of water for the poloxamer, lowering solubility of the polymer in the subphase and thus increasing its propensity to be maintained within the monolayer to higher pressures.  相似文献   

3.
Heat of micellization and phase separation temperature (known as cloud point) for the poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (abbreviated by PEO–PPO–PEO) triblock copolymers, the Pluronics F108, F98, F88, F68, F38, P65, and L62, in water are carefully determined by using a high sensitivity differential scanning calorimeter. It is interesting to find out that there exists a maximum heat of micellization for all these Pluronics. In this study, the heat of micellization of all of the Pluronics decreases as the temperature increases, as expected, at high temperature region (low Pluronic concentration region). However, the enthalpy change has a surprisingly positive relationship with temperature at low temperature region (high Pluronic concentration region). The critical micelle temperature consistently decreases as the Pluronic concentration increases. This unexpected behavior of the positive heat capacity changes of Pluronic aqueous solutions at higher concentration region is somewhat related to the variation of water accessible polar (PEO groups) and non-polar (PPO groups) surface areas in the micellization process. Especially, the removal of polar surface area from water may dominate the contribution to the positive heat capacity change upon micellization. In addition, the cloud points of Pluronic solutions are also discussed. The enthalpy–entropy compensation phenomenon for the micellization of Pluronics is discussed, and the enthalpy–entropy compensation temperature is calculated.  相似文献   

4.
单滴法;pluronics;卵磷脂;混合界面吸附膜;乳状液稳定性  相似文献   

5.
The temperature-induced structural changes and thermodynamics of ionic microgels based on poly(acrylic acid) (PAA) networks bonded with poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO) (Pluronic) copolymers have been studied by small-angle neutron scattering (SANS), ultra-small-angle neutron scattering (USANS), differential scanning calorimetry (DSC), and equilibrium swelling techniques. Aggregation within microgels based on PAA and either the hydrophobic Pluronic L92 (average composition, EO8PO52EO8; PPO content, 80%) or the hydrophilic Pluronic F127 (average composition, EO99PO67EO99; PPO content, 30%) was studied and compared to that in the solutions of the parent Pluronic. The neutron scattering results indicate the formation of micelle-like aggregates within the F127-based microgel particles, while the L92-based microgels formed fractal structures of dense nanoparticles. The microgels exhibit thermodynamically favorable volume phase transitions within certain temperature ranges due to reversible aggregation of the PPO chains, which occurs because of hydrophobic associations. The values of the apparent standard enthalpy of aggregation in the microgel suspensions indicate aggregation of hydrophobic clusters that are more hydrophobic than the un-cross-linked PPO chains in the Pluronic. Differences in the PPO content in Pluronics L92 and F127 result in a higher hydrophobicity of the resulting L92-PAA-EGDMAmicrogels and a larger presence of hydrophobic, densely cross-linked clusters that aggregate into supramolecular structures rather than micelle-like aggregates such as those formed in the F127-PAA-EGDMA microgels.  相似文献   

6.
Interactions between amphiphilic block copolymers and lipids are of medical interest for applications such as drug delivery and the restoration of damaged cell membranes. A series of monodisperse poly(ethylene oxide)-poly(butylene oxide) (EOBO) block copolymers were obtained with two ratios of hydrophilic/hydrophobic block lengths. We have explored the surface activity of EOBO at a clean interface and under 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) monolayers as a simple cell membrane model. At the same subphase concentration, EOBO achieved higher equilibrium surface pressures under DPPC compared to a bare interface, and the surface activity was improved with longer poly(butylene oxide) blocks. Further investigation of the DPPC/EOBO monolayers showed that combined films exhibited similar surface rheology compared to pure DPPC at the same surface pressures. DPPC/EOBO phase separation was observed in fluorescently doped monolayers, and within the liquid-expanded liquid-condensed coexistence region for DPPC, EOBO did not drastically alter the liquid-condensed domain shapes. Grazing incidence X-ray diffraction (GIXD) and X-ray reflectivity (XRR) quantitatively confirmed that the lattice spacings and tilt of DPPC in lipid-rich regions of the monolayer were nearly equivalent to those of a pure DPPC monolayer at the same surface pressures.  相似文献   

7.
通过表面压-分子面积等温线的测定,考察了亚相pH对气水界面上的维生素E(VE)/二棕榈酰基磷脂酰胆碱单分子膜的影响。亚相pH降低不改变DPPC单分子膜的崩裂压,但使VE单分子膜的崩裂压明显增大,不改变VE单分子膜的平均分子面积,但使DPPC单分子膜凝缩,低表面压下,VE对DPPC单分子膜的膨胀作用在纯水上很小,在pH为1的亚相上则很明显,这提示在低pH的亚相上,VE/DPPC单分子膜中的极性头基间  相似文献   

8.
Pluronic block copolymers offer affluent phase behavioral characteristics and are extensively investigated for drug delivery applications. Hydrophobic Pluronics produce larger aggregates whereas hydrophilic Pluronics often generate small-sized micelles in aqueous milieu. To overcome the limitations and combine the advantages of different kinds of Pluronics the mixing of such two types of Pluronics is studied here, especially for hydrophobic Pluronic L81 and relatively hydrophilic Pluronic P123. Critical micelle concentration (CMC) of the developed binary mixtures was 0.032 mg/ml as evidenced from pyrene fluorescence spectroscopy and is located in between that of the individual Pluronics. Dynamic light scattering (DLS) showed very small particle sizes (~20 nm) and low polydispersity indices for most of the mixed micelles. Transmission electron microscopy (TEM) demonstrated spherical shape of micelles. Based upon the ratio of hydrophobic and hydrophilic Pluronics, dispersions of varied stability were obtained. With 0.1/1.0 wt.% and 0.5/3.0 wt.% of Pluronic L81/P123, stable dispersions were obtained. Stability was assessed from turbidity measurement, size analysis and clarity of dispersion on standing. Micelles were also found to be stable in bovine serum albumin (BSA) solution. Mixed micelles showed fairly high entrapment efficiency, loading capacity and sustained release profile for aceclofenac (Acl), a model hydrophobe. Presence of salt lowered Acl solubilization in micelles. Thermodynamic parameters for Acl solubilization in mixed micelles revealed high partition coefficient values and spontaneity of drug solubilization. Thus, the developed novel mixed micelles hold promise in controlled and targeted drug delivery owing to their very small size, high entrapment efficiency and stability.  相似文献   

9.
Surface pressure-area, surface potential-area, and dipole moment-area isotherms were obtained for monolayers made from a partially fluorinated surfactant, (perfluorooctyl)undecyldimorpholinophosphate (F8H11DMP), dipalmitoylphosphatidylcholine (DPPC), and their combinations. Monolayers, spread on a 0.15 M NaCl subphase, were investigated at the air/water interface by the Wilhelmy method, ionizing electrode method, and fluorescence microscopy. Surface potentials were analyzed using the three-layer model proposed by Demchak and Fort. The contribution of the dimorpholinophosphate polar head group of F8H11DMP to the vertical component of the dipole moment was estimated to be 4.99 D. The linear variation of the phase transition pressure as a function of F8H11DMP molar fraction (X(F8H11DMP)) demonstrated that DPPC and F8H11DMP are miscible in the monolayer. This result was confirmed by deviations from the additivity rule observed when plotting the molecular areas and the surface potentials as a function of X(F8H11DMP) over the whole range of surface pressures investigated. Assuming a regular surface mixture, the Joos equation, which was used for the analysis of the collapse pressure of mixed monolayers, allowed calculation of the interaction parameter (xi=-1.3) and the energy of interaction (Delta epsilon =537 Jmol(-1)) between DPPC and F8H11DMP. The miscibility of DPPC and F8H11DMP within the monolayer was also supported by fluorescence microscopy. Examination of the observed flower-like patterns showed that F8H11DMP favors dissolution of the ordered LC phase domains of DPPC, a feature that may be key to the use of phospholipid preparations as lung surfactants.  相似文献   

10.
The initial mechanism by which antimicrobial peptides target microbes occurs via electrostatic interactions; however, the mechanism is not well understood. We investigate the interaction of the antimicrobial peptide bactenecin with a 50:50 w:w% 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dimyristoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DMPG) phospholipid mixture at the air-water interface with different NaCl concentrations (0.01, 0.05, 0.1, 0.5 M) in the subphase. A larger shift of DPPC:DMPG isotherms was obtained for 0.1 M salt concentration at lower and higher pressures, demonstrating the influence of the negative charge of DMPG molecules and the screening of the electrostatic interaction by the salt concentration. Raman spectroscopy of monolayers demonstrated the presence of cysteine-cysteine bridges in bactenecin loops. The peptide adsorption in DPPC:DMPG monolayers observed by AFM images suggests a self-assembled aggregation process, starting with filament-like networks. Domains similar to carpets were formed and pore structures were obtained after a critical peptide concentration, according to the carpet model.  相似文献   

11.
Cellulose nanowhiskers (CNWs) prepared via TEMPO mediated oxidation are used as biodegradable filler in an epoxy matrix. Since CNWs are hydrophilic and epoxy is hydrophobic, amphiphilic block copolymer surfactants are employed to improve the interactions between the filler and the matrix. The surfactants used are Pluronics, a family of triblock copolymers containing two poly(ethylene oxide) blocks and one poly(propylene oxide) block. In this study, Pluronic L61 and L121 with molecular weight of 2000 and 4400 g/mol and hydrophilic to lipophilic balance of 3 and 1 respectively, are used and their effect on the dispersion of CNWs in epoxy is discussed. The hydrophilic tails of Pluronics interact with the hydroxyl and carboxylic groups on the CNW surface and then these surfactant-treated CNWs are directly incorporated into epoxy by high speed mixing. The dispersion state of the surfactant-treated CNWs in epoxy is assessed by rheological measurements and the mechanical properties of the resulting composites are characterized by tensile test and dynamic mechanical thermal analysis. The Pluronic L61 treated CNW/epoxy composites show the highest storage modulus at high temperatures (about 77 % increases) indicative of improved interfacial interactions between the CNWs and the epoxy matrix. Also, an increase of around 10 °C in the glass–rubbery transition temperature of the L61 treated CNW/epoxy composite leads to potential application at higher service temperatures.  相似文献   

12.
The interaction between dimethylsulfoxide (DMSO) and phospholipid monolayers with different polar headgroups was studied using "in situ" Brewster angle microscopy (BAM) coupled to a Langmuir trough. For a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) monolayer, DMSO was shown to significantly impact the structure of the liquid expanded (LE) and gaseous phases. The domains reorganized to much larger domain structures. Domains in the liquid condensed (LC) phase were formed on the DMSO-containing subphase at the mean molecular area where only gaseous and LE phases were previously observed on the pure water subphase. These results clearly demonstrate the condensing and caging effect of DMSO molecules on the DPPC monolayer. Similar effects were found on dipalmitoyl phosphatidyl ethanolamine, glycerol, and serine phospholipids, indicating that the condensing and caging effect is not dependent upon the phospholipid headgroup structure. The DMSO-induced condensing and caging effect is the molecular mechanism that may account for the enhanced permeability of membranes upon exposure to DMSO.  相似文献   

13.
Three amphiphilic poly(oxyethylene)-poly(oxypropylene)-poly(oxyethylene) ethers triblock copolymers, denoted Pluronic L61 (PEO3PPO30PEO3), Pluronic L64 (PEO13PPO30PEO13), and Pluronic F68 (PEO79PPO30PEO79) were shown to aggregate and form micelles in ionic liquids (ILs) 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF4) and 1-butyl-3-methylimidazolium hexafluorophosphate (bmimPF6). The surface tension measurements revealed that the dissolution of the copolymers in ILs depressed the surface tension in a manner analogous to aqueous solutions. The cmcs of three triblock copolymers increase following the order of L61, L64, F68, suggesting that micellar formation was driven by solvatophobic effect. cmc and gamma cmc decrease with increasing temperature because hydrogen bonds between ILs and hydrophilic group of copolymers decrease and accordingly enhance the solvatophobic interaction. Micellar droplets of irregular shape with average size of 50 nm were observed. The thermodynamic parameters DeltaGm0, DeltaHm0, DeltaSm0 of the micellization of block copolymers in bmimBF4 and bmimPF6 were also calculated. It was revealed that the micellization is a process of entropy driving, which was further confirmed by isothermal titration calorimetry (ITC) measurements.  相似文献   

14.
Polymeric carriers are extensively used in photodynamic therapy (PDT) for increase of efficacy of photosensitizers. Here, we report the influence of nine Pluronic copolymers on phototoxicity of chlorin e6 (Ce6), in particular 5‐ to 7‐fold rise in the phototoxicity caused by hydrophilic Pluronics F127, F108, F68 and F87 and practically no influence on Ce6 of more hydrophobic polymers. The revealed value of 0.2 mg mL?1 of Pluronic F127 concentration sufficient for half‐of‐maximal increase of Ce6 photodynamic activity proved to be close to 0.16 mg mL?1 inherent in well‐documented carrier poly(N‐vinylpyrrolidone) (PVP). The dissociation constants of Ce6 complexes with Pluronic F127 and PVP that were estimated from UV spectra were 0.252 and 0.036 mg mL?1, respectively, indicating higher stability of Ce6 complex with PVP. According to the results of 1H‐NMR studies of Ce6 complexes, the porphyrin interacts not only with hydrophobic regions but also with hydrophilic sides of both polymers.  相似文献   

15.
利用Langmuir-Blodgett(LB)技术制备了不同表面压力下的1,2-二油酸-甘油-3-磷脂酰胆碱(DOPC)/1,2-二棕榈酸甘油-3-磷脂酰胆碱(DPPC)(摩尔比为1:1)和DOPC/DPPC/Chol(摩尔比为2:2:1)单层膜, 对单层膜内分子间的相互作用进行了热力学分析, 并用荧光显微镜和原子力显微镜对其形态进行了观测.热力学分析表明, DOPC与DPPC分子在单层膜结构中相互作用为排斥力, 诱导单层膜出现相变; DOPC, DPPC与胆固醇(Chol)间的相互作用均为吸引力, 当表面压力(π)大于18 mN/m时, DPPC与胆固醇的作用力大于DOPC.荧光显微镜观测表明, DOPC/DPPC单层膜出现明显相分离现象, 富含DPPC微区成“花形”结构, 且随着表面压力的升高微区逐渐增大, “花瓣”增多; 当胆固醇加入到DOPC/DPPC体系时, 单层膜相态由液相与凝胶相共存转变为液态无序相与液态有序相共存结构, 富含DPPC的微区形状从“花形”转变成“圆形”.原子力显微镜对单层膜的表征验证了荧光显微镜的观测结果, 表明胆固醇加入到DOPC/DPPC体系中对单层膜排列具有明显的影响, 压力和溶液状态等是影响脂膜结构的重要因素.  相似文献   

16.
Hybrid gold–polymer nanoparticles are obtained by self‐assembly of amphiphilic copolymers (Pluronics) in solutions containing preformed gold nanoparticles (diameter ca. 12 nm). Dynamic light scattering, TEM, cryo‐TEM, and small‐angle neutron scattering experiments with contrast variation are used to characterize the structure of the gold–polymer particles. Five Pluronics (F127, F68, F88, F108, P84) with different molecular weights and hydrophilic/hydrophobic balances are investigated. Gold nanoparticles are individually embedded within globules of polymer, even under conditions for which Pluronics micelles do not form in solution. The hybrid particles are several tens of nanometers in size (larger than micelles of the corresponding Pluronics), and the size can be tuned by changing the temperature.  相似文献   

17.
It has recently been found that Pluronics (block copolymers of ethylene oxide, EO, and propylene oxide, PO) favor the permeability and accumulation of anthracycline antibiotics, for example doxorubicin (Dox), in tumor cells. In an effort to understand these results, the interaction of EO(2)/PO(32)/EO(2) (Pluronic L61) with unilamellar egg yolk vesicles (80-100 nm in diameter) was examined. A partition coefficient K(p)=[Pl](membrane)/[Pl](water)=45 was determined. This corresponds to adsorption of about 20 polymer molecules to the surface of each vesicle in a 20 microM polymer solution. Despite this rather weak adsorption, Pluronic has a substantial effect upon the transmembrane permeation rate of Dox and upon the phospholipid flip-flop rate within the bilayers. Thus, the Dox permeation rate increases threefold and the flip-flop rate increases sixfold in 20 microM Pluronic. The two rates increase linearly with the amount of adsorbed polymer. The obvious ability of Pluronics to increase the mobility of membrane components may have important biomedical consequences.  相似文献   

18.
The degradation kinetics of Langmuir monolayer films of a series of biodegradable polyesters has been studied to investigate the effect of degradation medium, alkalinity and enzymes. The degradation behavior of polyester monolayers strongly depended on both degradation medium and surface pressure. As the surface pressure was increased, the degradation rates of poly(l-lactide) (PLLA) and poly[(R)-3-hydroxybutyrate] (P(3HB)) increased in both degradation media. When monolayers were exposed to an alkaline subphase, the degradation of PLLA monolayers occurred at relatively low surface pressures; the PLLA monolayers were hydrolyzed at pH 10.5 regardless of surface pressure, while the alkaline degradation of P(3HB) monolayer occurred over a constant surface pressure of 7 mN/m at pH 11.8. These results have been explained by the difference in hydrophilic/hydrophobic balance of the polymers; PLLA is more hydrophilic than P(3HB). In contrast, the enzymatic degradations of both polymer monolayers occurred at higher constant surface pressures than those of the alkaline treatment; 7 mN/m for PLLA and 10 mN/m for P(3HB). This behavior was attributed to the enzymes being much larger than the alkaline ions: the enzymes need a larger contact area with the submerged monolayers to be activated.  相似文献   

19.
Interactions of the phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) with the amphiphilic diblock copolymer Ch-lPEG30-b-hbPG24 (ChP) are studied at the air–water interface by surface pressure–mean molecular area (πmmA) measurements of mixed Langmuir films and adsorption measurements of ChP to the air–water interface covered with DPPC monolayers at different initial surface pressure values π 0. ChP is composed of a single hydrophobic cholesteryl (Ch) moiety covalently bound to a diblock copolymer consisting of a hydrophilic linear poly(ethylene glycol) (lPEG) block and a hydrophilic hyperbranched poly(glycerol) (hbPG) block. Langmuir isotherms and compression moduli of the mixed Langmuir films of different molar ratios reveal distinct interactions between DPPC and ChP during compression. It is demonstrated that the behavior of the DPPC/ChP mixtures is dominated by DPPC up to a molar ratio of 10:1, whereas the behavior is predominantly governed by ChP in mixtures with lower DPPC content (molar ratios of 5:1, 2:1, and 1:1). In adsorption measurements, a strong affinity of ChP to DPPC is observed after injection into the water subphase. The surface pressure value π in up to which ChP is able to penetrate into DPPC monolayers is determined to the remarkably high value of 48.2 mN/m which attests the favorable interactions between DPPC and the Ch moiety of ChP. Atomic force microscopy on LB films of DPPC/ChP mixtures of different molar ratios transferred onto hydrophilic substrates confirms the presence of two different phases, a DPPC-rich phase and a ChP-rich phase.  相似文献   

20.
The effect of hydrophobic alkylated gold nanoparticles (Au NPs) on the phase behavior and structure of Langmuir monolayers of dipalmitoylphosphatidylcholine (DPPC) and Survanta, a naturally derived commercial pulmonary surfactant that contains DPPC as the main lipid component and hydrophobic surfactant proteins SP-B and SP-C, has been investigated in connection with the potential implication of inorganic NPs in pulmonary surfactant dysfunction. Hexadecanethiolate-capped Au NPs (C(16)SAu NPs) with an average core diameter of 2 nm have been incorporated into DPPC monolayers in concentrations ranging from 0.1 to 0.5 mol %. Concentrations of up to 0.2 mol % in DPPC and 16 wt % in Survanta do not affect the monolayer phase behavior at 20 °C, as evidenced by surface pressure-area (π-A) and ellipsometric isotherms. The monolayer structure at the air/water interface was imaged as a function of the surface pressure by Brewster angle microscopy (BAM). In the liquid-expanded/liquid-condensed phase coexistence region of DPPC, the presence of 0.2 mol % C(16)SAu NPs causes the formation of many small, circular, condensed lipid domains, in contrast to the characteristic larger multilobes formed by pure lipid. Condensed domains of similar size and shape to those of DPPC with 0.2 mol % C(16)SAu NPs are formed by compressing Survanta, and these are not affected by the C(16)SAu NPs. Atomic force microscopy images of Langmuir-Schaefer-deposited films support the BAM observations and reveal, moreover, that at high surface pressures (i.e., 35 and 45 mN m(-1)) the C(16)SAu NPs form honeycomb-like aggregates around the polygonal condensed DPPC domains. In the Survanta monolayers, the C(16)SAu NPs were found to accumulate together with the proteins in the liquid-expanded phase around the circular condensed lipid domains. In conclusion, the presence of hydrophobic C(16)SAu NPs in amounts that do not influence the π-A isotherm alters the nucleation, growth, and morphology of the condensed domains in monolayers of DPPC but not of those of Survanta. Systematic investigations of the effect of the interaction of chemically defined NPs with the lipid and protein components of lung surfactant on the physicochemical properties of surfactant films are pertinent to understanding how inhaled NPs impact pulmonary function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号