首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
采用浸渍法制备了Ni基整体式催化剂,考察了不同条件(温度、时间、空速、水蒸气添加等)对催化剂上生物质粗燃气重整反应性能的影响。结果表明,催化剂在较低温度下(≤500 ℃)只具有CO加氢反应活性,随着反应温度的升高粗燃气重整反应逐渐进行,在800 ℃以上,CH4和C2转化率均高达95 %以上,CO2转化率达到92%,但随着反应空速和水蒸气添加量的增加,CH4和CO2等转化率呈现缓慢降低的趋势。此外,通过改变水蒸气添加量可对合成气中H2/CO体积比在0.85~4.00进行较好调节。结合XRD表征发现,Ni基整体式催化剂中Ni°的生成可较好地促进重整反应的进行。  相似文献   

2.
生物油水溶性组分的水蒸气催化重整制氢实验研究   总被引:4,自引:1,他引:3  
利用固定床反应器对生物油水溶性组分重整制氢反应进行了考察,研究了温度、吸收剂的加入对反应过程的影响。结果表明,在常压条件下生物油水溶性组分的最佳重整温度为800℃,此时H2体积分数为60%、CO体积分数为10%。加入CO2吸收剂后,H2体积分数提高了25%,H2产率提高了10%。在常压条件下,以CaO作为吸收剂时,最佳的反应温度为600℃,此时H2体积分数最高可达85%。650℃时CaO对CO2的吸收能力减弱导致其对生成H2反应的促进作用急剧降低。  相似文献   

3.
Ni-Mg-ZrO2催化剂上煤层甲烷三重整制合成气   总被引:2,自引:0,他引:2  
采用共沉淀法制备Ni-ZrO2和Ni-Mg-ZrO2催化剂,用BET、XRD、H2-TPR、CO2-TPD等技术对催化剂进行了表征。采用固定床流动反应装置,研究了催化剂在煤层甲烷三重整制合成气反应中的催化性能;考察了反应温度和原料气体组成对反应的影响。实验结果表明,Ni-Mg-ZrO2催化剂在反应温度800℃、常压、空速为30 000 mL/(g·h)、CH4/CO2/H2O/O2/N2=1.0/0.45/0.45/0.1/0.4的条件下,CH4转化率为99%,CO2转化率为65%左右,生成合成气H2/CO体积比为1.5,并在58 h的实验中催化剂活性和稳定性良好。这主要归因于催化剂中金属和载体之间的强相互作用、催化剂的高热稳定性和强碱性。此外,较高的反应温度有利于甲烷三重整反应的进行;通过调节原料气组成,可以获得不同H2/CO体积比的合成气。  相似文献   

4.
本研究以共沉淀法制备的α-Fe2O3催化剂为前驱体,通过调变碳化温度和碳化时间制备了不同物相组成的系列催化剂,采用XRD、M?ssbauer谱、XPS和Raman光谱等技术考察了催化剂体相和表面物相组成,在此基础上研究了不同条件下(不同CO转化率和H2O分压)催化剂的物相组成与催化剂性能之间的关系,重点探究了费托合成条件下CO2生成的活性相。结果表明,升高碳化温度和延长碳化时间有利于Fe3O4向碳化铁转变。在典型的费托合成条件下,催化剂的活性受到碳化铁含量和积炭程度的共同影响。当H2O分压较低时,动力学因素限制了水煤气变换(WGS)反应的进行,CO2选择性仅受CO转化率的影响,Fe3O4含量变化对CO2选择性无明显影响;而在较高的H2O分压下,随着催化剂中Fe3O4含量增加,CO  相似文献   

5.
共沉淀法制备CeZrYLa+LaAl 复合氧化物载体, 等体积浸渍法制备了Pt 催化剂, 用于研究理论空燃比天然气汽车(NGVs)尾气净化反应中CH4与NO的反应规律. 并考察了10% (体积分数, φ)H2O和计量比O2对CO2存在时的CH4+NO反应的影响. 结果表明: 对于不同条件下的NO+CH4反应, 主要生成N2和CO2, 高温区有CO生成. 低温区无O2时可以生成N2O, 有O2时可以生成NO2; 添加10% (φ)的H2O后, CH4 转化活性降低, NO转化活性基本不变, 这是由于H2O减弱了CH4与CO2的重整反应, 但是对CH4与NO的反应基本没有影响; 添加计量比的O2后, CH4转化活性提高, 而NO转化活性降低, 这是由于O2和NO之间存在竞争吸附, CH4被O2氧化为主要反应, 从而减弱了NO的转化; 同时添加计量比的O2和10% (φ) H2O, CH4与CO2的重整反应受到抑制,CH4与NO的反应、甲烷蒸汽重整反应和甲烷被O2氧化反应同时发生, CH4和NO的转化活性均提高.  相似文献   

6.
利用固定床气化-色谱联用装置,考察了蒙古国巴嘎诺尔(Baganuur)褐煤的水蒸气气化反应性能,研究对比了巴嘎诺尔褐煤原煤BN-R、盐酸洗煤BN-HCl、氨水洗煤BN-NH4OH、先酸洗后碱处理煤BN-HCl-NaOH及原煤和盐酸洗煤热解预处理煤样BN-R-Char与BN-HCl-Char在水蒸气气化过程中气态产物H2、CO和CO2的生成规律.研究结果表明,上述煤样的水蒸气气化过程中H2、CO和CO2的生成速率存在明显差异,与盐酸洗煤样相比,BN-R、BN-HCl-NaOH及BN-R-Char比对应矿物质脱除煤样的水蒸气气化速率高,充分说明巴嘎诺尔褐煤中某些固有矿物质对其水蒸气气化反应具有显著的催化作用,显著提高了其气化反应速率,使起始气化温度和气化反应主体温度均降低100 ℃以上,在提高H2和CO2生成量同时,还降低了CO生成量,制得了高H2/CO(物质的量比)的合成气.用盐酸脱除矿物质所得BN-HCl同BN-HCl-Char的水蒸气气化性能相似.与BN-R相比,BN-HCl与BN-HCl-Char水蒸气气化反应性明显下降,说明对巴嘎诺尔褐煤水蒸气气化起催化作用的矿物质成分在盐酸洗脱的矿物质中.经过分析,发现矿物质对巴嘎诺尔褐煤水蒸气气化反应的催化作用,主要是通过提高水煤气变换反应速率实现的.最后,结合文献报道,提出了巴嘎诺尔褐煤水蒸气气化反应过程中矿物质的原位催化机理.  相似文献   

7.
采用共沉淀法制备了一系列具有类水滑石结构前驱体的Ni/CaO-Al2O3复合催化剂,考察了制备过程中焙烧温度对复合催化剂结构及性能的影响。结果表明,焙烧温度可调控活性组分Ni与载体之间的相互作用力,进而调变复合催化剂的比表面积、活性组分Ni的颗粒粒径。当焙烧温度为700 ℃时,Ni与载体之间相互作用力适宜,复合催化剂具有最大的比表面积(21.42 m2/g)和最小的Ni颗粒粒径(19.51 nm);该复合催化剂在CO2吸附强化CH4/H2O重整制氢过程中可得到98.31%的H2浓度和94.87%的CH4转化率,循环10次后,H2浓度仍能保持在97.35%以上。这是因为大的比表面积为反应提供了更多的活性位点,利于CO2吸附过程的强化,而小的Ni颗粒粒径提高了复合催化剂的抗烧结能力。  相似文献   

8.
在固定床反应器中考察了钾盐对金山石油焦/水蒸气气化反应活性和产氢特性的影响,并与石油焦/水蒸气非催化气化反应特性进行了对比研究。研究结果表明,钾盐不仅能有效降低气化反应温度、改善石油焦的气化反应活性,而且能够促进气化反应过程中发生的各种反应(碳/水反应、水煤气变换和甲烷/水蒸气重整反应)。随着气化温度的升高,非催化气化的产物气中H2的含量逐渐增加,而催化气化的产物气中H2的含量则有所降低,这是由于非催化和催化气化条件下水煤气变换反应处于不同的状态。与非催化气化相比,催化气化条件下单位质量石油焦完全气化生成的产物气中H2不仅产率高,而且含量也高(非催化和催化气化条件下H2的含量分别为47.2%~54.1%和55.0%~60.4%)。各种钾盐对石油焦/水蒸气气化反应的催化活性顺序为:K2CO3>KAc>KNO3>K2SO4>KCl,但不同的钾盐对气体产物分布的影响较小。  相似文献   

9.
采用水热法合成了纳米棒状La(OH)3载体,通过湿式浸渍方法制备了10%Ni/La(Ⅲ)负载型催化剂,考察了500~800℃不同焙烧温度对于催化剂氢解山梨醇制备低碳二元醇的影响,结合XRD、SEM/EDS、BET、H2-TPR-MS、CO/CO2-TPD-MS、TG和ICP-AES等表征手段对Ni/La(Ⅲ)催化剂的构效关系进行了分析。结果表明,Ni/La(Ⅲ)催化剂表现出高的氢解反应活性,在较低的焙烧温度下(500℃)催化剂主要以NiO/La2O2CO3结构形式存在。随着焙烧温度的升高,NiO/La2O2CO3逐渐向La2NiO4-La2O3进行转变。碱性是影响不同催化剂活性的决定因素,高的焙烧温度促进了催化剂中强碱性位的生成,显著提高了氢解反应活性,但对液体产物的选择性无明显影响,在220℃、4MPa H2、1.5h的条件下,山梨醇完全转化,低碳二元醇的产率可达到53%。低的焙烧温度则增加了催化剂的水热稳定性。催化剂的失活主要归结于活性金属粒子在水相反应中从载体表面脱落而发生团聚,降低氢解反应活性。  相似文献   

10.
采用沉淀法和浸渍法制备了具有氧空位的CeO2纳米材料和甲醇水蒸气重整制氢CuO/CeO2催化剂,探索不同焙烧气氛对CeO2纳米材料结构、性质和甲醇水蒸气重整制氢性能的影响。采用SEM、XRD、BET、H2-TPR、N2O滴定和XPS等手段对催化剂进行了表征。结果表明,CuO/CeO2催化剂的催化活性与催化剂的Cu比表面积大小、Cu-Ce的相互作用强弱、表面缺陷和表面氧空位的多少有关。其中,在氢气气氛下焙烧所得的CeO2负载CuO后的CuO/CeO2-H催化剂催化活性最佳。在反应温度为250℃,水醇物质的量比为1.2时,甲醇气体空速为800 h-1,甲醇转化率达到了100%,重整尾气中CO含量为0.87%。  相似文献   

11.
对甲烷自热重整进行了系统的热力学分析,并采用预混合层流模型结合甲烷氧化、蒸汽重整、干重整机理对反应过程进行了动力学分析。结果表明,甲烷自热重整的平衡产物及其浓度主要受温度、O2/CH4、H2O/CH4的影响;压力影响不是十分明显,主要影响达到平衡的速度。在715℃~730℃、压力0.7MPa~1.0MPa,控制O2/CH4在0.60~0.70、H2O/CH4在3.15~3.25,可以得到H2>68%、CO<10%的产物气,积炭率接近于0。动力学分析表明,自热重整过程分为两个主要阶段进行,在起始阶段主要发生甲烷氧化反应,产物主要为H2O和CO2;第二阶段以甲烷蒸汽重整反应为主,伴随水气变换反应(WGS)和微弱的干重整,H2CO和CO2为主要产物。调节初始水浓度可以控制快速氧化阶段反应速率,避免“热点”出现,抑制CO的生成。  相似文献   

12.
提出了电催化作用下甲烷水蒸气催化重整的新工艺。基于工业常规Ni基催化剂,采用等体积浸渍法,以Ni为活性组分,γ-Al_2O_3为载体,MgO、CaO为助剂,制备了Ni/γ-Al_2O_3、Ni-MgO/γ-Al_2O_3和Ni-CaO/γ-Al_2O_3催化剂,考察了电流强度、重整温度、水蒸气与甲烷的物质的量比(水碳比,S/C)对不同催化剂的CH_4转化率、H_2产率、CO选择性和催化剂稳定性的影响。结果表明,电催化工艺有着良好的普适性,电流的引入能够提升CH_4转化率、增加H_2产率,尤其在低温下电流的促进作用显著。在三种催化剂中,Ni-CaO/γ-Al_2O_3催化效果最佳,在电流为4.5 A、S/C为3、重整温度为700℃时,CH_4转化率就高达95%以上。稳定性测试表明,电流的通入还能显著提高催化剂的稳定性,延缓催化剂的积炭失活。通过对催化剂的分析表征,发现电流的通入提升了催化剂中NiO的还原程度,同时抑制了反应过程中NiC_x向石墨炭的转化,从而可延缓催化剂因积炭覆盖反应活性位点而造成的失活。  相似文献   

13.
采用等体积浸渍的方式,在全硅Beta分子筛载体上担载Cu、Ni活性组分,制备出一系列xCuyNi-ABZ多功能乙醇水蒸气重整制氢催化剂。通过XRD、TEM、SEM-EDX以及XPS等多种表征手段,研究催化剂的结构特性、活性组分含量等因素对催化性能的影响,依据反应产物分布,揭示其作用机理。结果表明,以Beta分子筛为载体可促使活性组分以纳米颗粒的形式高度分散于载体表面,并且存在较强的载体-金属作用力。与传统SiO_2为载体催化剂相比,2.5Cu2.5Ni-ABZ催化剂具备良好的乙醇水蒸气重整催化性能,当反应温度为450℃,实现100%的乙醇转化率和67.23%的H_2选择性,且副产物CO(4.14%)、CH_4(5.65%)含量相对较低。这可归因于Cu和Ni活性组分间的高效协同作用,Cu具有良好的乙醇脱氢性能,生成反应中间体乙醛;在反应过程中,乙醛的重整和分解是两个受温度影响的竞争反应,Ni组分利用其较强的C-C键断裂能力,随温度的升高,乙醛重整反应占主导作用,生成目标产物H_2。通过对反应后样品分析表明,2.5Cu2.5Ni-ABZ催化剂具备良好的抗烧结和抗积炭催化性能。  相似文献   

14.
结合行星式球磨机,采用机械化学法制备Ni-Al2O3催化剂,考察了焙烧温度和焙烧时间对Ni-Al2O3催化剂晶相结构、还原特征、孔道结构和浆态床CO甲烷化性能的影响。通过XRD、H2-TPR、BET、XPS和TPH等方法对反应前后催化剂进行表征。结果表明,焙烧温度从350℃升高到700℃,活性前体NiO仍在载体表面高度分散,催化剂还原峰温向高温方向偏移。其中,450℃条件下焙烧所获得的cat-450试样比表面积最大,为350 m2/g。评价结果显示,焙烧温度从350℃升高到700℃,CO转化率、CH4选择性和收率均呈先升高后降低的趋势,于450℃达到最大值,分别为97.8%、88.2%和86.2%。另外,焙烧时间对催化剂的还原性能影响较小,对载体Al2O3的晶相结构有一定影响。随焙烧时间延长,CO转化率稍有降低,而后增大;焙烧时间为4 h,CH4选择性和收率均较大。  相似文献   

15.
以低温沉淀方法制备的羟基磷灰石(HAp)为载体,采用浸渍法制备了一系列不同Ni含量的Ni/HAp催化剂,并采用BET、H2-TPR、XRD、SEM、FT-IR、TEM和TG-DTA技术对催化剂进行了表征。结果表明,NiO含量为13%的催化剂表现出最好的催化甲烷二氧化碳重整制合成气活性,在850℃、空速3.6×104mL/(h·gcat)的反应条件下,甲烷和二氧化碳的转化率在10 h内分别稳定在72%和83%。这主要归因于催化剂中金属和载体之间的强相互作用。虽然反应后的催化剂表面有少量的积炭,但这些积炭多以丝状炭存在,并不会影响催化剂的活性和稳定性。  相似文献   

16.
助剂MgO、CaO对甲烷水蒸气重整Ni/γ-Al2O3催化性能的影响   总被引:3,自引:1,他引:2  
采用固定床装置,考察了以共浸方式引入的助剂MgO、CaO对Ni/γ-Al2O3催化剂在甲烷水蒸气催化重整中的催化反应性能的影响。结果表明,在H2O/CH4/N2的摩尔比为2.86/1/3.28,GHSV为1800h-1,反应温度为700℃下,催化剂Ni-CaO/Al2O3催化性能最好;反应初期甲烷转化率可达到96.95%、CO选择性可达68.93%、H2收率可达73.58%。XRD和H2-TPR结果表明,CaO的存在使催化剂中的活性NiO组分增多,还原性和分散性能较好。利用热分析技术对积炭进行考察发现反应10h后的Ni-CaO/Al2O3催化剂上并未出现导致催化剂失活的炭物种。  相似文献   

17.
The effect of electron beam irradiation on the CO2 reforming of methane over Ni/Al2O3 was investigated. The conversion rate of CO2 and CH4 forming H2 and CO using various catalysts irradiated with an absorbed dose greater than 2 MGy was 5–10% higher than when using an untreated catalyst. The Ni/O ratio on the catalyst surface increased after treatment with an electron beam, and was more prominent for catalysts with a higher Ni content. As such, based on XRD and XPS measurements, electron beam treatment was found to result in either the desorption of oxygen from NiO or the removal of OH groups from the outermost surface layer of the catalyst. In addition, the concentration of active sites, such as Ni2+ and NiO, or surface defects was also found to increase with the absorbed radiation dose, thereby increasing the conversion rate.  相似文献   

18.
The performance of the Ni-Co bimetallic catalyst was significantly improved by a novel H2 and CO2 (HCD) pretreatment in the dry reforming of methane compared with traditional H2 pretreatment. The effects of the HCD pretreatment operating conditions, such as pretreatment time, temperature, gas feeding ratio, and gas flow rate, on the catalytic performance of Ni-Co bimetallic catalyst were investigated. The optimal pretreatment time, temperature, gas feeding ratio (CH4/CO2), and gas flow rate were 0.5-1 h, 780-800 ℃, 0:10, and 175-200 mL·min-1, respectively. Biogas was simulated with CH4 and CO2 in a volume ratio of 1 and without any other diluted gas. The catalyst was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and thermogravimetry (TG) coupled to differential scanning calorimetry (DSC). In a 511 h stability test under the optimized operating conditions, the catalyst pretreated with both H2 and CO2 exhibited excellent stability. The average conversions of CH4 and CO2, selectivities for H2 and CO, and volume ratio of H2/CO were 96%, 97%, 98%, 99%, and 0.98, respectively. The average carbon deposition rate over the Ni-Co bimetallic catalyst was only about 0.2 mg·g-1·h-1. The characterization results revealed that the sintering speed of the metal greatly decreased with testing time, and the metal particle will not greatly sinter with further testing time. The amount of deposited carbon on the catalyst gradually decreased and growth of filamentous carbon over the surface of the catalyst could be inhibited. The performance of the Ni-Co bimetallic catalyst was significantly improved by a novel H2 and CO2 (HCD) pretreatment in the dry reforming of methane compared with traditional H2 pretreatment. The effects of the HCD pretreatment operating conditions, such as pretreatment time, temperature, gas feeding ratio, and gas flow rate, on the catalytic performance of Ni-Co bimetallic catalyst were investigated. The optimal pretreatment time, temperature, gas feeding ratio (CH4/CO2), and gas flow rate were 0.5-1 h, 780-800 ℃, 0:10, and 175-200 mL·min-1, respectively. Biogas was simulated with CH4 and CO2 in a volume ratio of 1 and without any other diluted gas. The catalyst was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and thermogravimetry (TG) coupled to differential scanning calorimetry (DSC). In a 511 h stability test under the optimized operating conditions, the catalyst pretreated with both H2 and CO2 exhibited excellent stability. The average conversions of CH4 and CO2, selectivities for H2 and CO, and volume ratio of H2/CO were 96%, 97%, 98%, 99%, and 0.98, respectively. The average carbon deposition rate over the Ni-Co bimetallic catalyst was only about 0.2 mg·g-1·h-1. The characterization results revealed that the sintering speed of the metal greatly decreased with testing time, and the metal particle will not greatly sinter with further testing time. The amount of deposited carbon on the catalyst gradually decreased and growth of filamentous carbon over the surface of the catalyst could be inhibited. Thereby, great catalytic activity and stability could be obtained during the dry reforming of methane reaction.  相似文献   

19.
在固定床反应器中,以甲苯作为生物质气化焦油模型化合物,橄榄石作为甲苯裂解催化剂,结合XRD、SEM、BET、H2-TPR等表征手段,考察了不同重整反应温度、CO_2浓度、橄榄石煅烧温度以及载镍量对甲苯催化重整性能的影响。结果表明,甲苯转化率随着重整反应温度的升高而增加,橄榄石对甲苯具有较高的催化活性,经900℃煅烧后的橄榄石活性最高。相比于橄榄石直接催化裂解甲苯,CO_2的加入能够显著降低催化剂表面的积炭率,当CO_2/C_7H_8物质的量比为4时,橄榄石催化剂表面的积炭率降低至17.0%。橄榄石载镍后,对C_7H_8/CO_2的催化重整性能进一步提高,甲苯转化率最高达到99.4%,但是积炭率也会随之增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号