首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 454 毫秒
1.
高碳转化率下热解神府煤焦CO2高温气化反应性   总被引:5,自引:0,他引:5  
用热天平等温热重法研究了6种不同热解速率和热解终温的神府煤焦在反应温度1200℃~1400℃的CO2气化反应性。研究了高碳转化率下,反应温度、热解终温和热解速率对快速和慢速热解焦高温反应性的影响。结果表明,快速热解焦比慢速热解焦的反应性好;随气化温度的提高,煤焦反应性的总体趋势增强,反应温度1300℃~1400℃时,3种快速热解焦的反应速率出现重叠;碳转化率为90%~98%时,慢速和快速热解焦的平均表观活化能为59.64kJ/mol~105.92kJ/mol和34.47kJ/mol~40.87kJ/mol,且气化反应以扩散控制步骤为主。  相似文献   

2.
以碳酸钾为催化剂,通过高温热台原位研究气化阶段神府/遵义煤焦与催化剂的交互作用,采用热重分析仪,考察气化温度(750~950℃)、催化剂负载量(钾离子负载量2.2%、4.4%、6.6%(质量分数))对煤焦气化反应性的影响。结果表明,K2CO3有利于促进神府/遵义煤热解过程孔隙结构的发展。气化温度低于碳酸钾熔点时,大部分煤焦颗粒与CO2的反应以颗粒收缩形式进行,当气化温度高于碳酸钾熔点时,对于神府煤焦,随着碳骨架快速消耗,在反应后期可观察到明显的熔融态钾催化剂扩散现象;而对于遵义煤焦,其碳骨架稳定消耗缓慢,大部分熔融态钾催化剂存在于煤焦表面。神府/遵义煤焦气化反应活性随碳酸钾负载量的增加而提高。钾催化剂对神府煤焦的催化作用随气化温度的升高先增强后减弱,转折温度点接近碳酸钾熔点,原因为熔融态钾催化剂流动性好,造成部分孔隙结构堵塞,导致钾催化剂催化作用减弱。  相似文献   

3.
碱金属碱土金属对神府煤焦气化活性的影响   总被引:1,自引:0,他引:1  
利用热重法和X射线衍射法,研究了神府煤热解焦CO_2气化过程中,碱金属碱土金属(AAEM)催化剂对气化活性和微晶结构的影响。比较了负载方式(先热解后负载和先负载后热解)、催化剂种类(Na、K、Ca)以及催化剂添加量(金属原子质量分数1%、3%、5%)的影响。结果表明,对碱金属催化剂,先热解后负载焦样的反应活性比先负载后热解的更好,而碱土金属负载方式对活性的影响则相反;Na和K的催化能力相接近,且两者都比Ca强;煤焦气化活性随AAEM负载量的增加而增强。负载AAEM催化剂均能抑制煤焦石墨化进程,其中,K的抑制作用最强,Ca的抑制作用最弱;抑制作用随添加量增加而增强。  相似文献   

4.
以含油污泥与配合煤为原料在850-1150℃热解制得焦样,采用N_2吸附-脱附和X射线衍射(XRD)分析煤焦孔隙结构及碳微晶结构,并运用热重分析(TGA)考察热解温度和含油污泥添加量对煤焦气化反应活性的影响。结果表明,提高热解温度和添加含油污泥能促进煤焦形成更加丰富的孔隙结构,强化煤焦-CO_2气化反应接触并抑制煤焦石墨化进程,从而提高煤焦气化反应活性;然而,热解温度过高或添加油泥量过多则会致使煤焦结构致密或孔隙堵塞,气化反应活性反而降低。  相似文献   

5.
基于热重分析仪开展负载碳酸钠神府烟煤/遵义无烟煤煤焦气化实验,并借助扫描电子显微镜和孔结构及比表面积分析仪表征焦样孔结构及表观结构变化,考察了反应温度(650-800℃)、气化剂(水蒸气、二氧化碳)及碳酸钠负载量(钠离子负载量2.2%、4.4%、6.6%,质量分数)对神府烟煤/遵义无烟煤焦样气化反应活性的影响。结果表明,碳酸钠有利于促进神府/遵义煤热解过程孔隙结构的发展。在二氧化碳气氛下,适宜催化剂负载量使神府烟煤反应活性提高,过多负载催化剂堵塞煤焦内部孔隙结构,使得气化反应活性降低,遵义无烟煤反应活性随负载量增加而提高,两者反应活性均随温度升高而提高。在水蒸气气氛下,神府烟煤/遵义无烟煤在一定条件下反应活性随催化剂负载量增大、温度升高而提高。碳酸钠的添加能够在保证气化反应性的前提下降低气化反应温度和活化能。  相似文献   

6.
利用固定床反应器研究了煤焦吸附和还原NO的动力学,分析了热解温度(500℃~900℃)和矿物质对煤焦脱除NO的影响。结果表明,在程序升温反应(TPR)和等温反应中,随着温度的升高(30℃~600℃),煤焦-NO经历了从化学吸附到还原反应的转变。低温时煤焦脱除NO的动力学符合Elovich方程,原煤焦的起始吸附速率随着温度的升高而增大,脱灰煤焦的起始吸附速率先增大后减小,等温吸附过程中煤焦的活化能随着吸附量的增大而增大。随着热解温度的升高,TPR中煤焦的NO转化率降低,等温还原反应的速率常数减小,高温热解导致煤焦脱除NO的活性降低。矿物质对煤焦-NO的吸附和还原反应存在催化作用。  相似文献   

7.
利用XRD技术考察了热解温度及升温速率对煤焦微晶结构的影响;使用Shi等的方法计算了煤焦微晶结构参数,获取了950℃~1400℃气化炉下煤焦微晶结构的特征及变化规律;结合热重分析得到了热解温度相关参数影响煤焦气化活性的机理。研究表明,热解温度升高,堆垛高度(Lc)明显增大而微晶尺寸(La)变化不大,说明煤焦基本晶格单元主要是进行纵向的接合缩聚,而晶格并没进行明显的内部生长,煤焦的微晶结构随热解温度的提高向有序化发展,但没达到石墨化的程度;慢速热解煤焦的气化反应活性明显低于相同温度下快速热解煤焦,慢速热解中,由于煤焦在高温下停留时间较长,而使煤焦微晶进行结构重整而变得更加有序,芳香单元失去边缘活性位,煤焦气化活性降低。  相似文献   

8.
利用热重分析仪研究了玉米芯及其酸水解残渣热解焦的气化反应性,重点考察了热解温度、升温速率、气化温度和气化介质(CO2、H2O)对残渣热解焦气化反应性的影响,并借助SEM观测了热解焦的表观形貌。结果表明,残渣热解焦的气化反应性较玉米芯热解焦有所下降;在热解温度550~850 ℃,残渣热解焦的气化反应性随热解温度提高而降低,在热解升温速率0.1 K/s下制取的热解焦,其气化反应性低于15.0 K/s下的热解焦;在气化温度850~950 ℃,提高气化反应温度和使用水蒸气作为气化介质能显著提高残渣热解焦的气化反应性;采用混合反应模型计算了残渣热解焦的气化反应动力学参数。  相似文献   

9.
神府煤焦与水蒸气、 CO2气化反应特性研究   总被引:3,自引:8,他引:3  
采用高温微量热天平和自制水蒸气发生装置进行神府煤焦与水蒸气和CO2气化实验,考察热解速率、不同气化剂(CO2和水蒸气)以及温度对气化反应的影响.用扫描电镜和吸附仪测定煤焦的初始结构.两种煤焦孔径为2 nm~170 nm的孔占总孔容的90%以上.神府快速煤焦(FP)与水蒸气气化活性比慢速煤焦(SP)高4.16倍,FP比SP挥发分脱除快,破坏其孔结构,减少缔合机会和二次反应.SP的BET比表面积为1.077 7 m2/g,FP的BET比表面积为1.893 9 m2/g.SP与水蒸气气化活性是CO2的9.94倍,FP与水蒸气的气化活性是CO2的7.15倍,水蒸气比CO2气化时进入的孔径范围广及水蒸气比CO2更容易解离.同种煤焦与水蒸气和CO2气化时的气化速率与转化率之间的趋势相近.用随机孔模型拟合并求取反应动力学参数,温度对SP与水蒸气、CO2反应速率,以及FP与水蒸气反应速率影响相似,而对FP与CO2反应速率影响明显比前三个反应要小.  相似文献   

10.
为了对储量相对丰富的昭通褐煤进行合理有效的分级转化利用,采用固定床程序升温热解的方法研究了不同温度下煤的热解行为,借助GC-MS和拉曼光谱对所得焦油和煤焦进行了表征分析,并在850℃下对不同热解温度制得的煤焦进行了水蒸气等温气化特性评价。结果表明,热解温度为700℃时,热解气体有效组分(H_2、CO、CH_4)的累积物质的量占总释放量的70%,此温度下热解气低位热值增长速率最快(以500℃下热解气低位热值为基准计算,其值为90%);酚类化合物在500-700℃大量生成析出,而温度高于700℃时,酚类化合物的分解反应加剧。不同热解温度下所制煤焦的表观气化反应速率随热解温度的升高不断降低,气化产物中CO_2与CO的物质的量逐渐升高,700℃热解制得的煤焦在水蒸气气氛下气化所得合成气中有效组分H_2与CO的比率最高。  相似文献   

11.
在加压热解装置上,考察了碳酸钾及热解气氛对煤热解过程中硫分布及其形态的影响。结果表明,碳酸钾通过捕获H_2S增加了半焦硫含量,同时可将煤焦表面活化,导致煤中有机质与黄铁矿分解产生的活泼硫结合形成新的有机硫。氢气能促进煤中硫的脱除,但是碳酸钾存在下热解释放的硫一部分以K_2S的形式固定于半焦中。水蒸气可显著促进煤中黄铁矿的分解,同时可与煤焦中的K_2S反应,降低半焦中的硫含量。两段床催化气化炉中,碳酸钾催化剂经热解后不影响其对煤焦的催化性能。  相似文献   

12.
在加压固定床反应器中,考察了负载碳酸钾的府谷煤热解半焦和不同气化率的部分气化半焦对CO甲烷化反应的催化性能。结果表明,原煤热解半焦和脱灰煤热解半焦的甲烷化活性都很低,而负载10%(质量分数)碳酸钾的热解半焦甲烷化活性明显提高,甲烷收率可达30%。负载碳酸钾的热解半焦水蒸气气化反应速率与碳气化率呈"火山"型关系曲线,在碳气化率为22%时达到极大值。在气化反应速率较高时得到的部分气化半焦上,甲烷化反应速率较低。利用红外光谱对半焦官能团进行分析,发现在热解过程中,碳酸钾和煤发生反应形成C-O-K复合物,在1100 cm-1附近出现特征振动峰,该峰的强度与碳气化反应速率成正比。不同气化率半焦经过甲烷化反应后,红外光谱谱图中C-O-K峰强度不同程度增大。  相似文献   

13.
碳酸钾催化的铁基氧载体煤催化化学链燃烧   总被引:1,自引:0,他引:1  
研究了K2CO3催化剂及惰性担体对铁基氧载体煤化学链燃烧的影响.实验结果表明,K2CO3的添加可明显促进铁基氧载体与煤之间的反应速率,其原因可归结为从氧载体上迁移到煤颗粒上的K2CO3对煤-CO2气化步骤的催化作用(该步骤为整个还原过程的速率控制步骤);由于K2CO3本身的促熔效果及加入K2CO3后导致的剧烈氧化还原反应,可以发现,K2CO3会增大铁基氧载体的烧结;不同惰性担体对铁基氧载体与煤的反应性影响不大,这是由于惰性担体对还原速控步没有影响;K2CO3在多循环化学链燃烧过程中依然可以保持一定的催化活性,另外由于催化剂的流失与失活,使得氧载体的反应活性有所下降.  相似文献   

14.
以煤矸石为研究对象,对比研究了Na2CO3与K2CO3对煤矸石催化气化反应性及催化气化灰中Al的溶出行为的影响。同时,采用X射线衍射分析(XRD)和热重分析(TGA)研究了不同催化剂及温度作用下矸石中矿物质的热转变过程。结果表明,与K2CO3相比,煤矸石中的高岭石更容易与Na2CO3反应生成钠霞石,而酸浸可实现钠霞石中铝和硅元素的有效分离。此外,Na2CO3作为催化剂时,所得气化灰经盐酸浸取后铝的浸出率可达到94.2%。而K2CO3作催化剂时,其铝的浸出率只有83.7%。因此,对矸石催化气化耦合气化灰的铝提取来说,Na2CO3催化剂具有更好的选择性。  相似文献   

15.
煤与生物质的相互作用已被广泛研究。但是,其相互作用机制通常是基于混合焦样的物理化学结构和反应性而提出。在这项工作中,基于不同形状和粒度将无烟煤与生物质共热解后的混合焦分离,然后通过分析分离后煤焦的结构和反应性来揭示煤与生物质相互作用机制。在热解温度为600和900℃条件下,在固定床反应器中制备了混合有不同比例的秸秆(CS)的无烟煤焦样。采用了电感耦合等离子体发射光谱法(ICP-OES)和X射线衍射(XRD)对煤焦的AAEM浓度和微晶结构进行了检测。利用TGA设备分析了分离后的煤焦与CO2的气化反应性。结果表明,随着掺混比例从0增加到80%,煤焦中活性K和Mg的浓度逐渐增加,并形成更为无序的碳结构。共热解过程中,更多的AAEM种类被混合物中的煤焦通过挥发分-焦相互作用捕获,而不是随生物质挥发分逸出。同时,热解温度的升高引起了K和Na挥发和失活,也导致石墨化度的降低。而且,CS的添加和更低的热解温度均可提高煤焦的气化反应性。此外,在煤焦的碱性指数AI与反应性指数R0.5之间建立了较好的线性关系(R2=0.9009),表明在煤与生物质共气化过程中,AAEMs对提高煤焦气化反应活性起主导作用。  相似文献   

16.
煤中负载氢氧化钙对催化气化和甲烷化反应的影响   总被引:1,自引:0,他引:1  
以不连沟次烟煤为研究对象,在加压固定床中研究Ca(OH)_2对煤气化及负载Ca(OH)_2煤热解半焦的甲烷化反应活性。结果表明,煤中添加Ca(OH)_2能够明显促进气化反应的进行和甲烷的生成,随着气化温度的升高和负载量的增加,碳转化率增加,但负载量存在饱和点。不同的催化剂负载方式对Ca的分散有一定的影响,进而影响其催化性能。含有Ca的半焦能够明显促进甲烷化的进行,出口气甲烷含量随甲烷化温度和催化剂负载量的升高而增强。采用红外光谱分析揭示了煤负载Ca(OH)_2的离子交换机理和扩散过程,这一过程影响煤气化反应性能。  相似文献   

17.
热重法研究K2CO3与Fe2O3对煤粉燃烧反应性的影响   总被引:5,自引:3,他引:2  
利用综合热重分析仪分别研究了K2CO3、Fe2O3对褐煤、烟煤、无烟煤、石墨等不同燃料的催化燃烧反应性的影响。结果表明,催化剂种类、添加量、粒径和燃料的变质程度对催化燃烧具有一定的影响;向无烟煤中加入K2CO3、Fe2O3两种催化剂,无烟煤的燃点由458℃分别降为319℃、405℃,燃烧速率由11.94%/min分别提高到26.40%/min、17.66%/min。K2CO3、Fe2O3对褐煤和烟煤的燃点没有明显的降低作用,但是对无烟煤和石墨燃点有明显的降低作用,且随着煤变质程度的增加,燃点降低幅度增大。由于引起燃点和燃速变化的原因不同,所以加入催化剂后造成燃点和燃速的变化也不同。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号