首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
将双氰胺、蔗糖与酞菁铁(钴)的混合物通过简单热解法,制备出Co/C-N、Fe/C-N和Fe-Co/C-N纳米复合物。随后利用热还原法,将少量铂沉积于Co/C-N上得到片状碳负载的Co-Pt纳米颗粒Co-Pt/C-N。对样品进行了详细表征,并研究了其在全域pH范围内(酸性、中性与碱性溶液)中的氧还原反应(ORR)活性。结果表明,Co/C-N具有比Fe/C-N和Fe-Co/C-N更高的ORR起始电位和半波电位,并且在碱性和中性溶液中,Co/C-N表现出比Pt/C更强的ORR电活性;在酸性溶液中,铂负载量(质量分数)8.1%的Co-Pt/C-N表现出与Pt/C相近的ORR起始与半波电位。催化剂优异的电活性主要归因于片状碳形成的三维结构、金属纳米颗粒的均匀分布以及丰富的吡啶氮。  相似文献   

2.
氧还原反应(ORR)是燃料电池和金属空气电池等洁净发电装置中阴极的主要反应,该反应动力学过程慢,电化学极化严重. Pt基电催化剂具有较好的ORR活性,然而Pt资源有限、价格昂贵,研制高活性、低成本的代Pt电催化剂意义重大.经过几十年的探索,研究者发现将含有C, N和Fe等元素的前体进行高温热处理得到的Fe-N-C电催化剂对ORR具有良好的活性,然而在高温热解过程中Fe容易发生聚集而形成大块颗粒,导致Fe的利用率不高,影响了电催化剂的ORR活性.
  本文分别以聚吡咯和乙二胺四乙酸二钠(EDTA-2Na)为C和N的前驱体,利用高温热解形成的富含微孔的碳材料对铁前体的吸附及锚定作用,获得了一种Fe高度分散的Fe-N-C电催化剂.采用物理吸脱附技术、高分辨透射电镜(HRTEM)和扫描电镜对Fe-N-C及其制备过程中相关电催化剂的孔结构及表面形貌进行了表征.结果表明,在第一步热解过程中, EDTA-2Na的Na对碳材料起到了活化作用,形成富含微孔的N掺杂碳材料(N-C-1),其BET比表面积达到1227 m2/g,孔径约1.1 nm.在第二步热解过程中, N-C-1有效地抑制了Fe的聚集,产物Fe-N-C中的Fe元素均匀地分布在碳材料中,其比表面积高达1501 m2/g.
  电化学测试结果表明,在碱性介质(0.1 mol/L NaOH)中, Fe-N-C电催化剂对ORR具有良好的催化活性, ORR起始电位(Eo)为1.08 V (vs. RHE),半波电位(E1/2)0.88 V,电子转移数n接近4, H2O2产率<3%,与商品20%Pt/C(Johnson Matthey)接近.电化学加速老化测试结果表明, Fe-N-C的E1/2未发生明显变化,而Pt的负移45 mV,表明Fe-N-C具有很好的稳定性;在酸性介质(0.1 mol/L HClO4)中, Fe-N-C的Eo为0.85 V, E1/2为0.75 V,其E1/2比Pt/C负移约0.15 V,表明在酸性介质中Fe-N-C对ORR的催化活性还有待提高.采用TEM、X射线衍射、X射线光电子能谱以及穆斯堡尔谱等方法研究了电催化剂构效关系.结果表明, Fe-N-C较好的ORR活性主要来自于高分散的Fe-N4结构,此外, N(吡啶N和石墨N)掺杂的C也对反应具有一定的催化活性.
  与Pt/C相比, Fe-N-C电催化剂具有很好的耐甲醇性能.本文对比了Fe-N-C和Pt/C作为阴极催化剂的直接醇类燃料电池(DMFC)性能,采用质子交换膜的DMFC最大功率密度分别为47(Fe-N-C)和79 mW/cm2(Pt/C),而采用碱性电解质膜的则分别为33(Fe-N-C)和8 mW/cm2(Pt/C).结合半电池结果表明, Fe-N-C电催化剂在碱性介质中具有比Pt更为优秀的催化活性和稳定性,有望用作DMFC阴极代Pt催化剂.  相似文献   

3.
氧还原反应(ORR)是燃料电池和金属空气电池等洁净发电装置中阴极的主要反应,该反应动力学过程慢,电化学极化严重.Pt基电催化剂具有较好的ORR活性,然而Pt资源有限、价格昂贵,研制高活性、低成本的代Pt电催化剂意义重大.经过几十年的探索,研究者发现将含有C,N和Fe等元素的前体进行高温热处理得到的Fe-N-C电催化剂对ORR具有良好的活性,然而在高温热解过程中Fe容易发生聚集而形成大块颗粒,导致Fe的利用率不高,影响了电催化剂的ORR活性.本文分别以聚吡咯和乙二胺四乙酸二钠(EDTA-2Na)为C和N的前驱体,利用高温热解形成的富含微孔的碳材料对铁前体的吸附及锚定作用,获得了一种Fe高度分散的Fe-N-C电催化剂.采用物理吸脱附技术、高分辨透射电镜(HRTEM)和扫描电镜对Fe-N-C及其制备过程中相关电催化剂的孔结构及表面形貌进行了表征.结果表明,在第一步热解过程中,EDTA-2Na的Na对碳材料起到了活化作用,形成富含微孔的N掺杂碳材料(N-C-1),其BET比表面积达到1227 m~2/g,孔径约1.1 nm.在第二步热解过程中,N-C-1有效地抑制了Fe的聚集,产物Fe-N-C中的Fe元素均匀地分布在碳材料中,其比表面积高达1501 m~2/g.电化学测试结果表明,在碱性介质(0.1 mol/L NaOH)中,Fe-N-C电催化剂对ORR具有良好的催化活性,ORR起始电位(E_o)为1.08 V(vs.RHE),半波电位(E_(1/2))0.88 V,电子转移数n接近4,H_2O_2产率3%,与商品20%Pt/C(Johnson Matthey)接近.电化学加速老化测试结果表明,Fe-N-C的E_(1/2)未发生明显变化,而Pt的负移45 mV,表明Fe-N-C具有很好的稳定性;在酸性介质(0.1 mol/L HClO_4)中,Fe-N-C的E_o为0.85 V,E_(1/2)为0.75 V,其E_(1/2)比Pt/C负移约0.15 V,表明在酸性介质中Fe-N-C对ORR的催化活性还有待提高.采用TEM、X射线衍射、X射线光电子能谱以及穆斯堡尔谱等方法研究了电催化剂构效关系.结果表明,Fe-N-C较好的ORR活性主要来自于高分散的Fe-N_4结构,此外,N(吡啶N和石墨N)掺杂的C也对反应具有一定的催化活性.与Pt/C相比,Fe-N-C电催化剂具有很好的耐甲醇性能.本文对比了Fe-N-C和Pt/C作为阴极催化剂的直接醇类燃料电池(DMFC)性能,采用质子交换膜的DMFC最大功率密度分别为47(Fe-N-C)和79 mW/cm~2(Pt/C),而采用碱性电解质膜的则分别为33(Fe-N-C)和8 mW/cm~2(Pt/C).结合半电池结果表明,Fe-N-C电催化剂在碱性介质中具有比Pt更为优秀的催化活性和稳定性,有望用作DMFC阴极代Pt催化剂.  相似文献   

4.
林华  吴艺津  李君涛  周尧 《电化学》2021,27(4):366-376
在金属空气电池和燃料电池阴极上的氧还原反应(ORR)对相关电化学能量转换装置的整体性能有重要影响,金属-氮-碳催化剂有望替代传统的商业Pt-C成为新一代ORR电催化剂。本文通过简便的一步热解工艺合成了具有Fe-Nx活性位点和Fe2O3纳米颗粒共存的电催化剂,Fe2O3@Fe-N-C-1000催化剂在0.1 mol·L-1 KOH溶液中表现出良好的ORR活性,半波电位为0.84 V,应用在锌-空气电池中时也具有可以和商业Pt-C媲美的性能,能量密度为88.3 mW·cm-2,同时和Pt-C相比具有更好电化学稳定性,表现出优良的ORR应用潜力。  相似文献   

5.
碳基非金属氧还原(ORR)电催化剂的研究近年来发展迅速,通过掺入杂原子等方法虽获得了一定的ORR活性,但仍需进一步提高。以此类电催化剂为基体,引入更多的活性位点,有可能获得更好的ORR活性。本文首先以带负电荷的SiO_2纳米球通过静电作用吸附带正电荷的质子化苯胺分子,再通过聚合反应实现聚苯胺(PANI)对SiO_2纳米球的包覆,之后将四甲氧基苯基铁卟啉(FeP)沉积在PANI表面,经高温热解,并去除SiO_2模板,得到了一种新型的多孔ORR电催化剂。在0.1 mol·L~(-1) KOH水溶液中,电催化剂的ORR半波电位达0.843 V (vs.可逆氢电极(RHE)),优于文献报道的大部分碳基非金属ORR电催化剂,与商业Pt/C相近。显著提高的ORR活性可能源于孔结构(平均孔径18 nm,孔容1.1 cm~3·g~(-1))、高比表面积(687.5 m~2·g~(-1))和高氮含量(6.4%)。在加速耐久性测试中,电催化剂的ORR半波电位衰减25 mV,与其它碳基非金属ORR电催化剂相当,且远优于商业Pt/C (衰减74 mV)。另外,电催化剂应用于氢氧根交换膜燃料电池(HEMFC)时的单池峰值功率密度达42 mW·cm~(-2)。  相似文献   

6.
准确理解金属大环配合物(如N4-Fe2+)体系的氧化还原化学性能,对氧还原反应(ORR)电催化剂的基础研究和合理设计具有重要意义.本文采用微波法将三种不同酞菁铁类金属大环配合物吸附在碳纳米管上,分别记为(NH2)4FePc@CNTs,(t-Bu)4FePc@CNTs和FePc@CNTs,考察了取代基对Fe3+/Fe2+氧化还原电位的影响,以及碱性介质中的氧还原反应催化活性.结果表明,FePc@CNTs,(t-Bu)4FePc@CNTs和(NH2)4FePc@CNTs的ORR起始电位分别为0.98,0.96和0.96 V,而半波电位(E1/2)由高到低的顺序为FePc@CNTs(E1/2=0.91 V),(t-Bu)4FePc@CNTs(E1/2=0.87 V),(NH2)4FePc@CNTs(E1/2=0.83 V).与20%Pt/C(E1/2=0.85 V)相比,FePc@CNTsFePc@CNTs具有优异的ORR性能.在活性、稳定性和耐甲醇性方面,FePc@CNTs复合材料比其他复合材料表现出更高的ORR性能.研究发现,FePc上的供电子基团可以显著改变N4-Fe2+活性位点的电子云密度,增加dz 2轨道(HOMO)的能量,并观察到Fe2+/Fe3+氧化还原电位显著向阴极方向移动.结果表明,取代基的高电子贡献能力降低了HOMO和LUMO(O2的杂轨道*-轨道)之间的电子耦合,从而降低了氧还原催化活性.因此,FePc框架外围的供电子基团对ORR不利.本文阐明了取代基电子效应-金属大环配合物氧化还原电位与ORR催化性能之间的关系,为ORR催化剂活性中心的构建和调控提供了借鉴.  相似文献   

7.
合成了同时具备弱芬顿效应活性位点(Ru-N x )和自由基消除位点(Ce-N x )的高稳定性电催化剂Ru, Ce-N-C. 电化学性能测试结果表明, 在酸性电解质中, Ru, Ce-N-C催化剂表现出良好的氧还原反应(ORR)活性(半波电位为0.78 V)和稳定性(30000次加速老化测试后, 半波电位仅下降8 mV), 优于Fe-N-C催化剂. 对反应机理的研究发现, Ru, Ce-N-C催化过程中电子转移数为3.98, 平均H2O2产率低于5%.  相似文献   

8.
质子交换膜燃料电池具有零污染、能量密度高、操作温度低和超静低音等优点,因而广泛应用于新能源汽车动力电源.然而质子交换膜燃料电池阴极氧还原反应(ORR)过程缓慢且复杂,因此需要大量的高性能ORR电催化剂.商品铂基催化剂是目前最为广泛使用的ORR催化剂,然而其高昂的价格阻碍了燃料电池汽车的商业化进程.因此,近年来人们致力于研发高性能的非贵金属ORR催化剂,并成功获得了具有高ORR活性及优异稳定性的催化剂.然而开发贵金属替代催化剂还存在制备过程较为复杂、单体有毒等缺点.核黄素具有成本低廉、无毒、氮含量高等优点,本文将其直接作为碳源和氮源,以无水氯化铁为铁前驱体,通过简单的一步热解法制备了高性能的Fe-N-C催化剂.表征结果表明,合成的催化剂表面由于氮的掺杂导致石墨烯存在较多的缺陷,其比表面积为301 m2 g-1且孔径分布主要位于45 nm处;催化剂由很薄、卷曲的石墨烯片层和一些颗粒组成,其中的碳材料高度石墨化且存在Fe2O3晶体.结合X射线光电子能谱和催化剂的ORR活性,推导出石墨化氮为ORR的主要活性位,铁在ORR反应中也起着重要作用.在氧气饱和的0.1 mol L-1 KOH溶液中,Fe-N-C催化剂的ORR活性达到4.16 mA cm-2,与商品Pt/C催化剂相当(4.46 mA cm-2).采用计时电流法在0.66 V(相对于RHE电位)下运行3 h后,Fe-N-C催化剂电流仅下降了3%,而Pt/C催化剂下降了40%,表明Fe-N-C催化剂与Pt/C催化剂具有相近的ORR活性,但稳定性比Pt/C催化剂更出色.测试结果表明,Fe-N-C催化剂的抗甲醇毒化性能远优于Pt/C催化剂.在酸性介质中,Fe-N-C催化剂的ORR活性比Pt/C催化剂低,但稳定性更高.总之,该Fe-N-C催化剂在碱性介质中有较高的活性和稳定性,在酸性介质中有较高的稳定性.因此,我们采用廉价、无毒的核黄素作为碳氮源,通过简单的一步热解法制备出的Fe-N-C催化剂能较好地满足燃料电池ORR催化剂高性能和低成本的要求,具有很好的应用前景.  相似文献   

9.
唐梅香  易清风 《应用化学》2013,30(10):1176-1181
在乙醇为溶剂和还原剂、碳粉为载体的体系中,采用水热法将Ag+或Ag+-Sn2+还原,形成纳米多孔网状结构的Ag或Ag-Sn双金属纳米颗粒,制备碳粉负载的Ag/C和Ag-Sn/C催化剂。 利用循环伏安和线性扫描技术,研究了碱性溶液中这些催化剂对氧还原反应(ORR)的电活性。 研究表明,Ag/C和Ag-Sn/C对ORR均表现出强的电催化活性,它们对ORR的起始电位约0.05 V(vs.Ag/AgCl)。 在Ag97Sn3/C催化剂上,ORR的电流密度为2.87×10-3 A/cm2(800 r/min),高于Ag/C。 Levich方程分析表明,在Ag-Sn/C催化剂上,ORR转移电子数明显大于Ag/C,说明在Ag-Sn/C催化剂上,氧气能够较为彻底被还原。 此外,在甲醇存在下,Ag/C和Ag-Sn/C对ORR的活性基本保持不变,表明它们对甲醇有较强的耐受力。  相似文献   

10.
以碳黑(Vulcan XC-72R)为载体, 硫酸钴(CoSO4 · 7H2O)和吡啶(Py)作为催化剂前躯体, 经溶剂分散及800℃热处理可制备出高效催化氧还原反应(ORR)的碳载钴吡啶复合催化剂(15%Co25%Py/C, 质量分数). 采用红外光谱(IR)和X射线光电子能谱(XPS)等对催化剂的结构进行表征. 运用旋转圆盘电极(RDE)技术研究了不同浓度的KOH溶液(0.05~12.0 mol/L)对CoPy/C催化氧还原活性的影响. 结果表明, 不同浓度的KOH溶液对CoPy/C催化剂催化氧还原反应(ORR)的性能影响很大, 在0.05和0.1 mol/L KOH溶液中催化剂活性最高. 以其制备的气体扩散电极在0.05 mol/L KOH溶液(O2气氛)中的半波电位为-0.138 V, 起峰电位为0.10 V, 同时表现出明显的极限扩散电流. 在-0.381 V时电流密度达到最大值(4.39 mA/cm2). 随着KOH溶液浓度的增加(pH值下降), 起始电压沿负方向移动, 同时动力学、 混合动力学和扩散区的电流密度均下降. RDE研究结果表明, 在0.05和0.1 mol/L KOH溶液中, O2在CoPy/C电极上的还原主要经4e-过程还原成H2O. XPS研究结果表明, 吡啶作为小分子富氮源对提高催化剂的活性具有重要作用, 所制备催化剂经800℃高温热处理形成了石墨N, 吡啶N以及部分氧化态的氮结构, 其中石墨N和吡啶N作为催化剂的活性中心, 提供氧还原活性位, 从而使该类催化剂对氧还原表现出很好的电催化性能和选择性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号