首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Nanostructure single ZnO, SnO2, In2O3 and composite ZnO/SnO2, ZnO/In2O3 and ZnO/SnO2/In2O3 films were prepared using sol?Cgel method. The obtained composite films were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV?CVis spectroscopy. The photocatalytic activities of composite films were investigated using phenol (P), 2,4-dichlorophenol (2,4-DCP), 4-chlorophenol (4-CP) and 4-aminophenol (4-AP) as a model organic compounds under UV light irradiation. Hybrid semiconductor thin films showed a higher photocatalytic activity than single component ZnO, SnO2 and In2O3 films. The substituted phenols degrade faster than phenol. The ease of degradation of phenols is different for each catalyst and the order of catalytic efficiency is also different for each phenol. The use of multiple components offered a higher control of their properties by varying the composition of the materials and related parameters such as morphology and interface. It was also found that the photocatalytic degradation of phenolic compounds on the composite films and single films followed pseudo-first order kinetics.  相似文献   

2.
ZnO doped SnO2 has been successfully synthesized by the solvothermal method using methanol as organic solvent. The effect of ZnO/SnO2 molar ratios on the crystal structure, microstructure, optical and photocatalytic properties has been investigated. The synthesized samples are characterized by X-ray diffraction, transmission electron microscopy, N2 physical adsorption, FT-IR spectroscopy and UV–Vis spectroscopy. XRD results revealed that all diffraction peaks positions agree well with the reflection of a tetragonal rutile structure of SnO2 phase without extra peaks at 0.1ZnO:0.9SnO2 and 0.2ZnO:0.8SnO2 molar ratios. However, the secondary phase of ZnO at 0.3ZnO:0.7SnO2 molar ratio was investigated. TEM images revealed that the shape of SnO2 particles was spherical and the particle sizes of SnO2 and 0.3ZnO:0.7SnO2 molar ratio were 6.2 and 16.4 nm, respectively. The newly prepared samples have been tested by the determination of photocatalytic degradation of methylene blue (MB). The results indicated that Zn2+ doping at 0.3ZnO:0.7 SnO2 molar ratio showed the highest photocatalytic activity for the MB photodegradation. The heightened photocatalytic activity of ZnO/SnO2 could be ascribed to the enhanced charge separation derived from the coupling of ZnO with SnO2 due to the potential energy differences between SnO2 and ZnO. The recycling tests demonstrated that 0.3ZnO:0.7 SnO2 photocatalysts were quite stable during that liquid–solid heterogeneous photocatalysis since no decrease in activity in the first four cycles was observed.  相似文献   

3.
To eliminate volatile organic compounds (VOCs) from contaminated air, a novel medium-scale baffled photocatalytic reactor was designed and fabricated, using immobilized ZnO/SnO2 coupled oxide photocatalysts. Toluene was chosen as a representative pollutant of VOCs to investigate the degradation mechanism and the parameters affecting photocatalytic degradation efficiency. The preliminary experimental results indicate that the degradation efficiency of toluene increased with the increase of the light irradiation dosage, while it decreased with the increase of concentrations of toluene. The degradation efficiency increased rapidly with the increase of the relative humidity in a low humidity range from 0 to 35%, but decreased gradually in a high relative humidity (i.e., >35%). The optimum experimental conditions for toluene degradation is a toluene concentration of 106 mg m?3, a relative humidity of 35%, and an illumination intensity of ca. 6 mW cm?2 at the surface of ZnO/SnO2 photocatalysts. The intermediates produced during the gaseous photocatalytic degradation process were identified using the GC–MS technique. Based on these identified intermediates, the photocatalytic mechanism of toluene into ZnO/SnO2 coupled oxide catalyst was also deduced.  相似文献   

4.
ZnO–SnO2 nanoparticles were prepared by coprecipitation method; then Mg, with different molar ratios and calcination temperatures, was loaded on the coupled nanoparticles by impregnation method. The synthesized nanoparticles were characterized by X‐ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X‐ray spectroscopy (EDX), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS), and Brunauer–Emmett–Teller (BET) techniques. Based on XRD results, the ZnO–SnO2 and Mg/ZnO–SnO2 nanoparticles were made of ZnO and SnO2 nanocrystallites. According to DRS spectra, the band gap energy value of 3.13 and 3.18 eV were obtained for ZnO–SnO2 and Mg/ZnO–SnO2 nanoparticles, respectively. BET analysis revealed a Type III isotherm with a microporous structure and surface area of 32.051 and 49.065 m2 g?1 for ZnO–SnO2 and Mg/ZnO–SnO2, respectively. Also, the spherical shape of nanocrystallites was deduced from TEM and FESEM images. The photocatalytic performance of pure ZnO–SnO2 and Mg/ZnO–SnO2 was analyzed in the photocatalytic removal of methyl orange (MO). The results indicated that Mg/ZnO–SnO2 exhibited superior photocatalytic activity to bare ZnO–SnO2 photocatalyst due to high surface area, increased MO adsorption and larger band gap energy. Maximum photocatalytic activity of Mg/ZnO–SnO2 nanoparticles was obtained with 0.8 mol% Mg and calcination temperature of 350°C.  相似文献   

5.
In present study, ZnO/SnO2/ZnO/SnO2/ZnO multi–layer, ZnO/SnO2/ZnO triple layer and ZnO single layer films have been deposited on glass substrate by sol–gel dip–coating technique. The structural and optical properties of thin films have been investigated by X-ray diffractometer, UV–visible, photoluminescence spectroscopies and scanning electron microscopy. The structural analysis reveals structural inhomogeneities and different crystallite growth processes as function of number of deposited layers. A comparison between photocatalytic activity of zinc oxide samples toward photodegradation of phenol, 4-aminophenol and 4-nitrophenol has been performed under UV light irradiation. Experiments were conducted to study the effects of operational parameters on the degradation rate. Pseudo-first-order photodegradation kinetics was observed on all films and the reaction constants were determined. The results showed that the photocatalytic activity of ZnO multi–layer film was superior to that of the ZnO single- and triple-layer films. Differences in film efficiencies can be attributed to differences in crystallinity, surface morphology, defect concentration of oxygen vacancy and to presence of SnO2 sublayer that may act as trap for electrons generated in the ZnO layer thus preventing electron–hole recombination. The results reveal that SnO2 hetrojunction layers improve crystalline quality, optical and photocatalytic properties of ZnO multilayered films.  相似文献   

6.
ZnO-Au25 nanocomposites were synthesized by doping Au25 nanoclusters into the porous ZnO nanospheres. It was notable that the ultrasmall Au25 nanoclusters possessed uniform sizes and fine dispersibility on the porous ZnO supports. A considerable correlation between the loading of Au25 nanoclusters and the photocatalytic activity was found. Compared with the pure ZnO nanospheres, the ZnO-Au25 nanocomposites exhibited more efficient photocatalytic activity in terms of degradation of Rhodamine B (RhB) in an aqueous solution. In addition, the possible photocatalytic mechanisms are discussed in this work. This strategy may be helpful for preparing other novel hybrid nanocomposites with well-defined structures and superior performances.  相似文献   

7.
In this study, the synthesis of ZnO/SiO2 nanocomposites using bamboo leaf ash (BLA) and tested their photocatalytic activity for rhodamine B decolorization have been conducted. The nanocomposites were prepared by the sol–gel reaction of zinc acetate dihydrate, which was used as a zinc oxide precursor, with silica gel obtained from the caustic extraction of BLA. The effect of the Zn content (5, 10, and 20 wt%) on the physicochemical characteristics and photocatalytic activity of the nanocomposites was investigated. The results of X-ray diffraction, scanning electron microscopy, gas sorption, and transmission electron microscopy characterization confirmed the mesoporous structure of the composites containing nanoflower-like ZnO (wurtzite) nanoparticles of 10–30 nm in size dispersed on the silica support. Further, the nanocomposites were confirmed to be composed of ZnO/SiO2 by X-ray photoelectron spectroscopy analysis. Meanwhile, diffuse-reflectance UV–visible spectrophotometry analysis of the nanocomposites revealed band gap energies of 3.38–3.39 eV. Of the tested nanocomposites, that containing 10 wt% Zn exhibited the highest decolorization efficiency (99%) and fastest decolorization rate. In addition, the degradation efficiencies were not reduced significantly after five repeated runs, demonstrating the reusability of the nanocomposite catalysts. Therefore, the ZnO/SiO2 nanocomposite obtained from BLA is a promising reusable photocatalyst for the degradation of dye-polluted water.  相似文献   

8.
SnO2–TiO2/fly ash cenospheres (FAC) were prepared via hydrothermal method and used as an active photocatalyst in a photocatalytic system. Scanning electron microscopy, X‐ray diffraction analysis, UV–Vis diffuse reflectance spectroscopy, Fourier transform infrared spectroscopy and N2 adsorption–desorption measurements were used to determine the structure and optical property of SnO2–TiO2/FAC. Phenol was selected as the model substance for photocatalytic reactions to evaluate catalytic ability. Results showed that the degradation efficiency of phenol by SnO2–TiO2/FAC was 90.7% higher than that decomposed by TiO2/FAC. Increased efficiency could be due to the enhanced synergistic effect of semiconductors and FAC could provide more adsorption sites for the pollutant in the photocatalytic reaction. Furthermore, SnO2–TiO2/FAC composites exhibited excellent photocatalytic stability in four reuse cycles. Radical‐trapping experiments further revealed the dominating functions of holes in the photocatalytic reaction.  相似文献   

9.
Visible light active Ag doped SnO2 nanoparticles modified with curcumin (Cur–Ag–SnO2) have been prepared by a combined precipitation and chemical impregnation route. The optical properties, phase structures and morphologies of the as-prepared nanoparticles were characterized using UV–visible diffuse reflectance spectra (UV–vis-DRS), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The surface area was measured by Brunauer. Emmett. Teller (B.E.T) analysis. Compared to bare SnO2, the surface modified photocatalysts (Ag–SnO2 and Cur–Ag–SnO2) showed a red shift in the visible region. The photocatalytic activity was monitored via the degradation of rose bengal (RB) dye and the results revealed that Cur–Ag–SnO2 shows better photocatalytic activity than that of Ag–SnO2 and SnO2. The superior photocatalytic activity of Cur–Ag–SnO2 could be attributed to the effective electron-hole separation by surface modification. The effect of photocatalyst concentration, initial dye concentration and electron scavenger on the photocatalytic activity was examined in detail. Furthermore, the antifungal activity of the photocatalysts and the reusability of Cur–Ag–SnO2 were tested.  相似文献   

10.
The SnO/SnO2 nanocomposites were synthesized using semisolvothermal reaction technique. These nanocomposites were prepared using different combination of solvents viz., ethanol, water, and ethylene glycol at 180 °C for 24 h. The synthesized nanocomposites were analyzed with various characterization techniques. Structural analysis indicates the formation of tetragonal phase of SnO2 for the sample prepared in ethanol, whereas for other solvent combinations, the mixture of SnO and SnO2 having tetragonal crystal structures were observed. The optical study shows enhanced absorbance in the visible region for all the prepared SnO/SnO2 nanocomposites. The observed band gap was found to be in the range of 3.0 to 3.25 eV. Microstructural determinations confirm the formation of nanostructures having spherical as well as rod-like morphology. The size of nanoparticles in ethanol-mediated solvent was found to be in the range of 5 to 7 nm. Thermogravimetric analysis indicate the weight gain around 1.3 wt% confirming the conversion of SnO to SnO2 material. The photocatalytic activity of synthesized nanocomposites was evaluated by following the aqueous methylene blue (MB) degradation. The sample prepared in ethylene glycol-mediated solvent showed highest photoactivity having apparent rate constant (Kapp) 0.62 × 10?2 min?1.  相似文献   

11.
In this article, novel Ag–ZnO/g-C3N4/GO ternary nanocomposites were prepared via co-precipitation method by 1%w Ag, 50% w g-C3N4, 10% w GO concentration and applied in dynamic membranes. The characteristics of Ag–ZnO/g-C3N4/GO nanocomposite were evaluated by various techniques such as X-ray diffraction, field emission scanning electron microscopy, energy dispersive X-ray map, transmission electron microscopy, X-ray photoelectron spectroscopy, photocatalyst. The photocatalytic degradation of methylene blue was investigated under visible light. The photocatalytic efficiency of 93.43% for methylene blue degradation was obtained for Ag–ZnO/g-C3N4/GO nanocomposite after 50 min of irradiation, which was remarkably higher than that of pure ZnO, bare g-C3N4, Ag–ZnO, and Ag–ZnO/g-C3N4 at the same irradiation time. Likewise, in self-forming and pre-coated membranes, ternary nanocomposites can play a vital role in the membrane surface properties, as well as their decolorization performance. The rejection of methylene blue was 30% in pure polyethersulfone membrane, while the photocatalytic degradation of methylene blue in Ag–ZnO/g-C3N4/GO nanocomposites was 88.46% and 98.86% after 10 and 15 min of irradiation in both self-forming and pre-coated dynamic membranes, respectively. Experimental results show that the dynamic membrane possesses a higher ability for degradation of MB in a shorter period of time than the static system.  相似文献   

12.
Different morphologies of ZnO structures were successfully synthesized in precursor solutions with the pH of 8, 9, 10, 11, and 12 by a sonochemical method at room temperature. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier Transform Infrared (FTIR) and Raman spectroscopy. The photocatalytic activities of ZnO samples with different morphologies were evaluated via the degradation of methylene blue (C16H18ClN3S). In this research, the flower-like ZnO sample of densely assembled nanoplates exhibited the highest photodegradation of 64% under UV light irradiation within 300 min.  相似文献   

13.
The polyaniline/zinc oxide (PANI/ZnO) nanocomposites were prepared by in situ polymerization of aniline monomer with ZnO nanomaterials and applied as a photocatalyst for the degradation of methylene blue (MB) dye. The morphological observations elicited the agglomerations of PANI sheets which occurred due to the interaction between PANI and ZnO nanomaterials in PANI/ZnO nanocomposites. As compared to pristine PANI, the UV–vis spectra exhibited that the absorption peak of ππ* transitions considerably shifted to higher wavelength at 360 nm from 325 nm in the nanocomposites. The photocatalytic activity results indicated the substantial degradation of MB dye by ~76% over the surface of PANI/ZnO nanocomposite catalyst under light illumination. The PANI/ZnO nanocomposites showed three times higher photocatalytic activity to MB dye degradation compared to pristine PANI might due to high photogenerated electron (ē)–hole (h+) pairs charge separation.  相似文献   

14.
Zero-valent iron-modified Degussa P25-TiO2/ZnO nanocomposites (denoted as P25/Fe0/ZnO) were designed and prepared via Fe0 impregnation of P25-TiO2/ZnO and then were employed in the visible-light photocatalytic degradation of p-nitrophenol (PNP) in the presence of [K2S2O8]. Central composite design was applied for response surface modeling (RSM) to understand the influence of selected factors (pH, [Fe0] wt% and [K2S2O8] concentration) on the degradation of PNP and to determine the interaction between the factors. The maximal PNP degradation efficiency (86.9%) was obtained with P25/1.5 wt% Fe0/ZnO at 3 mg/L of [K2S2O8] concentration and pH 7.5. In addition, the RSM showed a satisfactory correlation between the experimental and predicted values of PNP degradation. The P25/Fe0/ZnO photocatalyst performance was also examined degrading methyl orange and phenol and high degradation efficiency, 82 and 99%, was achieved, respectively. The structure, morphology, light absorption and photocatalytic properties of as-prepared P25/Fe0/ZnO were studied using TEM, BET, XRD, FTIR and DRS.  相似文献   

15.
采用溶胶-凝胶-程序升温溶剂热一步法,利用表面活性剂EO20PO70EO20(P123)作为模板剂,分别制备了三元纳米复合材料Ag/ZnO-TiO2、Ag/Al2O3-TiO2和Ag/Fe2O3-TiO2。通过XRD、氮气吸附-脱附测定、TEM以及扫描电子显微镜配合X-射线能量色散谱仪(SEM-EDS)等对合成的3种催化剂进行了对比表征分析。结果表明,复合材料Ag/MxOy-TiO2中Ag以单质形式存在并较好地分布在MxOy-TiO2表面上。所合成产物颗粒尺寸较小(约10 nm左右),形貌较好。其中,Ag/ZnO-TiO2的比表面积与Ag/Al2O3-TiO2十分相近,略大于Ag/Fe2O3-TiO2。光催化活性研究中,以甲基橙为模型分子且辅以微波场作用。结果显示,上述三元复合材料的活性均明显高于未掺杂银的二元复合材料,其中Ag/ZnO-TiO2的光催化活性最好,在90 min内对甲基橙的降解率高达86%。  相似文献   

16.
特殊形貌的ZnO晶体:水热法生长及光催化性能   总被引:1,自引:0,他引:1  
王虎  谢娟  段明 《无机化学学报》2011,27(2):321-326
采用水热法制得了微米棒状的ZnO结构,并通过改变降温冷却方式得到了锥形管状的ZnO结构。以染料甲基橙的光催化降解为模型评价了ZnO的光催化活性。利用XRD和SEM表征了ZnO的晶体结构和微观形貌。结果表明,所得的ZnO晶体在高压汞灯照射下表现出良好的光催化性能,且ZnO锥形管的光催化活性优于微米棒。ZnO晶体光催化降解甲基橙的反应符合一级反应动力学规律。探讨了ZnO锥形管的形成机理以及光催化降解甲基橙的作用机理。  相似文献   

17.
以Bi(NO3)3·5H2O、Zn(CH3COO)2·2H2O和NaBr为前驱体,采用简单溶剂热法制备BiOBr/ZnO三维花状微纳米复合材料.采用X射线衍射、扫描电子显微镜、X射线光子能谱、N2吸附-脱附、光致发光和电子顺磁共振等分析技术对其理化性质进行了表征.通过可见光催化降解罗丹明B(RhB)的实验测试了复合材料...  相似文献   

18.
In this work, environmentally friendly photocatalysts with attractive catalytic properties are reported that have been prepared by introducing SnO2 quantum dots (QDs) directly onto ZnSe(N2H4)0.5 substrates to induce advantageous charge separation. The SnO2/ZnSe(N2H4)0.5 nanocomposites could be easily synthesized through a one-pot hydrothermal process. Owing to the absence of capping ligands, the attached SnO2 QDs displayed superior photocatalytic properties, generating many exposed reactive surfaces. Moreover, the addition of a specified amount of SnO2 boosted the visible-light photocatalytic activity; however, the presence of excess SnO2 QDs in the substrate resulted in aggregation and deteriorated the performance. The spectroscopic data revealed that the SnO2 QDs act as a photocatalytic mediator and enhance the charge separation within the type II band alignment system of the SnO2/ZnSe(N2H4)0.5 heterojunction photocatalysts. The separated charges in the heterojunction nanocomposites promote radical generation and react with pollutants, resulting in enhanced photocatalytic performance.  相似文献   

19.
Nanocomposites of magnesium aluminium layered double hydroxides with carbonate anions (Mg–Al–CO3-LDHs) and ZnO nanorods were prepared by a homogeneous precipitation process. The ZnO nanorods give the calcined Mg–Al–CO3-LDHs, strong adsorbents of anionic dyes, photocatalytic activity. The nanocomposites were characterized by X-ray diffraction, transmission electron microscopy, and UV–vis diffuse reflectance spectroscopy. The photocatalytic activity of the nanocomposites was investigated by degradation of acid red G in aqueous solution, and the nanocomposite with the ZnO-to-Mg–Al–CO3-LDHs mass ratio of 1:1 had the highest photocatalytic activity in this photocatalytic reaction.  相似文献   

20.
Sulfur doped ZnO/TiO2 nanocomposite photocatalysts were synthesized by a facile sol‐gel method. The structure and properties of catalysts were characterized by X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), UV‐vis diffusive reflectance spectroscopy (DRS) and N2 desorption‐adsorption isotherm. The XRD study showed that TiO2 was anatase phase and there was no obvious difference in crystal composition of various S‐ZnO/TiO2. The XPS study showed that the Zn element exists as ZnO and S atoms form SO2?4. The prepared samples had mesoporosity revealed by N2 desorption‐adsorption isotherm result. The degradation of Rhodamine B dye under visible light irradiation was chosen as probe reaction to evaluate the photocatalytic activity of the ZnO/TiO2 nanocomposite. The commercial TiO2 photocatalyst (Degussa P25) was taken as standard photocatalyst to contrast the prepared different photocatalyst in current work. The improvement of the photocatalytic activity of S‐ZnO/TiO2 composite photocatalyst can be attributed to the suitable energetic positions between ZnO and TiO2, the acidity site caused by sulfur doping and the enlargement of the specific area. S‐3.0ZnO/TiO2 exhibited the highest photocatalytic activity under visible light irradiation after Zn amount was optimized, which was 2.6 times higher than P25.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号