首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
边长为微米级的银纳米片的简易合成与形成机理   总被引:2,自引:0,他引:2  
用低温(60 ℃)溶剂热法, 以N,N-二甲基甲酰胺(DMF)为主还原剂和溶剂, 以聚乙烯吡咯烷酮(PVP)为辅助还原剂和晶面生长控制剂, 以硝酸银为前驱物, 大量制备了高纯度的、边长为微米级、宽厚比≥10的单晶银纳米片. 采用粉末X射线衍射(PXRD)、场发射扫描电镜(FE-SEM)、透射电子显微镜(TEM)等表征和分析了合成产物的成分、形貌和结构. 结果表明, 合成的银纳米片为面心立方单晶, 边长为1-4 μm, 厚度为50-100 nm. 考察了不同溶剂对银纳米结构的影响, 并提出了大尺寸的银纳米片的形成机理. 本文为调控单晶银纳米片的边长和宽厚比提供了一种新的可靠的动力学方法, 制备的长边长、大宽厚比的单晶银纳米片在聚合物基导电复合材料和电磁屏蔽材料方面有潜在的重要应用.  相似文献   

2.
HgSe nanorods have been synthesized through a simple hydrothermal reduction approach. The nanorods formed were ≈45 nm average diameter and ≈3 μm nm in length. X-ray diffraction characterization suggested that the product consists of cubic phase pure HgSe. The as-prepared products were also characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). An X-ray energy dispersive spectroscopy (EDX) study further confirmed the composition and purity of the product. The synthesis procedure is simple and uses less toxic reagents than the previously reported methods. The results showed that the capping agent CTAB (cetyltrimethylammoniumbromide) plays a crucial role in the process. Other factors, such as the reaction time, temperature, different capping agent and the reductant type also have an influence on the morphology of the final products to some extent.  相似文献   

3.
The flower-like silver nanoparticles have been synthesized by reducing silver nitrate (AgNO3) with ascorbic acid (AA) as the reductant and polyvinyl pyrrolidone (PVP) as the capping agent under vigorous stirring. Such flower-like nanoparticles are aggregates of small nanoplates and nanorods. They were tested as substrates for the surface-enhanced Raman scattering (SERS), showing high sensitivity for detecting Rhodamine 6G (R6G) at a concentration as low as 10-7 mol/L. It has been found that replacing mechanical stirring with ultrasound sonication would drastically change the particle morphology, from flower-like nanoparticles to well-dispersed smaller nanoparticles. Furthermore, when trace amounts of NaCl were added into the reagents, well-dispersed Ag nanoparticles formed even in vigorous stirring. These phenomena can be explained with the diffusion and reactant supply during nucleation and growth of Ag nanoparticles.  相似文献   

4.
Triangular silver nanoplates exhibit excellent optical and catalytic properties in many fields, such as catalysts, sensors and bio-medicine. In this paper, triangular nanoplates were generated just in the presence of sodium citrate through a light-induced ripening process, which were converted from spherical silver nanoparticles by reducing silver nitrate with sodium borohydride. By using UV–Vis spectroscopy, particle size analyzer, transmission electron microscopy (TEM) and Ag+ concentration analysis, the effects of precursors during the preparation of triangular nanoplates were systematically investigated and the optimal experimental conditions were determined. Based on density functional theory (DFT), the adsorption energies of citrate ion, malate ion and tartronate ion on Ag (1 1 1), (1 1 0) and (1 0 0) were calculated. In addition, theoretical calculations coupled with experimental observations showed that citrate ion as capping agent could more preferentially bind to Ag (1 1 1) and thus blocked Ag (1 1 1) while only allowing extensive growth along the lateral direction. This well explains sodium citrate is an efficient agent in preparing triangular silver nanoplates.  相似文献   

5.
Polycrystalline CdS hollow nanospheres with diameter of about 130 nm have been successfully synthesized in high yield by an ionic liquid (IL) assisted template-free hydrothermal method for the first time. Both the molar ratios of Cd/S precursor in the solution and the reaction temperature play important roles in the formation of the CdS hollow nanospheres. The concentrations of capping agent hexamethylenetetramine (HMT) and polyvinylpyrrolidone (PVP) are also crucial for the morphology and size of the final product. IL was found to be a key component in the formation of CdS hollow structures, because solid spheres were obtained in the absence of IL. A subsequent growth mechanism of hollow interior by localized Ostwald ripening process has been further discussed. Such hollow structures show high photocatalytic ability in the photodegradation of methylene blue.  相似文献   

6.
Hollow capsules can be prepared in a single stage by the interfacial complexation of methylcellulose (MC) with poly(acrylic acid) (PAA) or tannic acid (TA) via hydrogen bonding in aqueous solutions. The formation of capsules is observed when viscous solution of methylcellulose is added drop-wise to diluted solutions of polyacids under acidic conditions. The optimal parameters such as polymer concentration and solution pH for the formation of these capsules were established in this work. It was found that tannic acid forms capsules in a broader range of concentrations and pHs compared to poly(acrylic acid). The TA/MC capsules exhibited better stability compared to PAA/MC in response to increase in pH: the dissolution of TA/MC capsules observed at pH > 9.5; whereas PAA/MC capsules dissolved at pH > 3.8. The interfacial complexation can be considered as a potential single stage alternative to the formation of capsules using multistage layer-by-layer deposition method.  相似文献   

7.
Here we proposed a synthetic method of high-purity Ag nanoplates by the reduction of aqueous Ag+ ions at the aqueous-organic interface with the reductant ferrocene. We demonstrated that the as-prepared Ag nanoplates can be widely tunable from 600 nm to 7 μm in size and from 10 to 35 nm in thickness, simply by adjusting the component of organic phase. To our knowledge, there are few methods to tailor the size and the thickness of metal nanoplates in such a large range although many efforts have been made aiming to realize it. Our proposed synthetic strategy is rapid, template-free, seed-less, and high-yield, and could be applied to synthesize analogous two-dimensional nanostructures of other noble metals, such as Pt, Au, and Pd.  相似文献   

8.
A citric acid (CA)-assisted hydrothermal process was used to prepare Fe2O3 hexagonal nanoplates with a lateral size of about 100 nm. In addition, the hexagonal nanoplates of Co(OH)2, MnCO3, and Ni(OH)2 were also synthesized by this route, indicative of the universality of the solution route presented herein. The morphologies and structures of the synthesized platelike nanostructures have been characterized by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), and X-ray diffraction (XRD). Furthermore, the mechanism for the formation of the platelike nanostructures has been preliminarily discussed. It is believed that the capping molecule of CA, which inhibits crystal growth along the <001> direction due to its chelating effect, plays a critical role in the hydrothermal formation of the nanoplates.  相似文献   

9.
This article describes a simple approach to anisotropic Au nanostructures with various shapes by reducing HAuCl 4 with poly(vinyl pyrrolidone) (PVP) in aqueous solutions without the use of any additional capping agent or reductant. In this approach, the commercially available PVP servers as a mild reducing agent thanks to its hydroxyl (-OH) end groups, enabling kinetic control over both nucleation and growth. As the volume of HAuCl 4 solution added to the reaction was increased, the morphology of Au nanostructures evolved from nanotadpoles to nanokites and then triangular and hexagonal microplates. The slow reduction rate associated with the mild reducing power of PVP plays a critical role in forming nanoplates during nucleation as well as their growth into highly anisotropic nanostructures. Electron microscopy studies reveal that the nanotadpoles and nanokites are formed through the linear fusion of small Au particles (<10 nm) to the initially formed nanoplates, whereas the microplates result from the continuous addition of Au atoms to the side faces of nanoplates. Through this morphological control, the localized surface plasmon resonance peaks of these Au nanostructures can be tuned in the visible and near-IR regions.  相似文献   

10.
In this work we have carried out systematic studies and identified the critical role of hydrogen peroxide instead of the generally believed citrate in the well-known chemical reduction route to silver nanoplates. This improved understanding allows us to develop consistently reproducible processes for the synthesis of nanoplates with high efficiency and yields. By harnessing the oxidative power of H(2)O(2), various silver sources including silver salts and metallic silver can be directly converted to nanoplates with the assistance of an appropriate capping ligand, thus significantly enhancing the reproducibility of the synthesis. Contrary to the previous conclusion that citrate is the key component, we have determined that the group of ligands with selective adhesion to Ag (111) facets can be expanded to many di- and tricarboxylate compounds whose two nearest carboxylate groups are separated by two or three carbon atoms. We have also found that the widely used secondary ligand polyvinylpyrrolidone can be replaced by many hydroxyl group-containing compounds or even removed entirely while still producing nanoplates of excellent uniformity and stability. In addition to the general understanding of NaBH(4) as a reducing agent, it has also been found to act as a capping agent to stabilize the silver nanoparticles, prolong the initiation time required for nanoplate nucleation, and contribute to the control of the thickness as well as the aspect ratio of silver nanoplates. The improved insight into the specific roles of the reaction components and significantly enhanced reproducibility are expected to help elucidate the formation mechanism of this interesting nanostructure.  相似文献   

11.
Zigzag silver nanowires with a uniform diameter of 20±5 nm were prepared by reducing silver nitrate (AgNO3) with N,N-dimethylformamide (DMF) in the presence of tetrabutyl titanate (TBT) and acetylacetone (AcAc) at 373 K for 18 h. X-ray and selected area electron diffraction (XRD and SAED) patterns reveal that the prepared product is made of pure silver with face centered cubic structure. Transmission electron microscopy (TEM) investigations suggest that the amount of silver nanowires is enhanced with increase in reaction time, and the end-to-end assemblies of silver nanorods are observed during the reaction process. After 18 h reaction, silver nanowires with zigzag morphology are obtained. In this paper, a possible growth process of silver nanowires with this interesting shape is described. Silver nanoparticles with small sizes were obtained by reducing Ag+ ions with DMF, providing seeds for homogeneous growth of silver nanorods. With the extending reaction time, the synthesized silver nanorods were connected in an end-to-end manner, and the interface between the connections of two nanorods gradually disappeared. The final product shows zigzag morphology with various angles. The angles between two connecting straight parts of zigzag nanowires exhibit an alterable range of 74-151°. These silver nanowires show tremendous potential applications in future nanoscale electronic circuits.  相似文献   

12.
In this article, single-crystal silver slices with predominant (1 1 1) facet were synthesized at room temperature with chitosan by a facile, one-pot, and totally green method. XRD, UV-visible and infrared spectroscopy have been employed for identifying chitosan-protected silver nanoparticles (NPs), while SEM, TEM were used to confirm silver NPs orientation along the (1 1 1) direction to form various shapes such as hexagon, trapezium, triangle and so on. The results showed that chitosan, a novel environmentally benign and excellently biocompatible material, serves not only as a reducing agent but also as a stabilizer for the growth of anisotropic silver NPs. The single-crystal silver slices with major facet of (1 1 1) can be used as a surface-enhanced Raman scattering (SERS) substrate, and crystal violet (CV) as a Raman probe to evaluate its enhancement ability. It was found that the enhancement ability of the silver slices was remarkable.  相似文献   

13.
Bismuth nanobelts in situ grown on a silicon wafer were synthesized through an ethanol-thermal method without any capping agent. The structure of the bismuth belt-silicon composite nanostructure was characterized by scanning electron microscope, energy-dispersive X-ray spectroscopy, and high resolution transmission electron microscope. The nanobelt is a multilayered structure 100-800 nm in width and over 50 μm in length. One layer has a thickness of about 50 nm. A unique sword-like nanostructure is observed as the initial structure of the nanobelts. From these observations, a possible growth mechanism of the nanobelt is proposed. Current-voltage property measurements indicate that the resistivity of the nanobelts is slightly larger than that of the bulk bismuth material.  相似文献   

14.
In this report, we present a simple wet chemical route to synthesize nano-sized silver particles, and their surface properties are discussed in detail. Silver nano particles of the size 40–80 nm are formed in the process of oxidation of glucose to gluconic acid by amine in the presence of silver nitrate, and the gluconic acid caps the nano silver particle. The presence of gluconic acid on the surface of nano silver particles was confirmed by XPS and FTIR studies. As the nano silver particle is encapsulated by gluconic acid, there was no surface oxidation, as confirmed by XPS studies. The nano silver particles have also been studied for their formation, structure, morphology and size using UV–Visible spectroscopy, XRD and SEM. Further, the antibacterial properties of these nano particles show promising results for E. Coli. The influence of the alkaline medium towards the particle size and yield was also studied by measuring the pH of the reaction for DEA, NaOH and Na2CO3.  相似文献   

15.
PVP and G1.5 PAMAM dendrimer co-mediated silver nanoparticles of smaller than 5 nm in diameter were prepared using H2 as reducing agent. With the TEM micrograph, it was found that the molar ratios of PVP and G1.5 PAMAM dendrimer have significant effect in the morphology and size distribution of silver nanoparticles. The reaction rate (fitting a first-order equation) was strongly influenced by the molar ratios of PVP and G1.5 PAMAM dendrimer and the reaction temperature. From the UV-Vis spectra of an aqueous solution of silver nanoparticles, they could be stored for at least 2 months without coagulation at room temperature.  相似文献   

16.
The Pepper leaves extract acts as a reducing and capping agent in the formation of silver nanoparticles. A UV–Vis spectrum of the aqueous medium containing silver nanoparticles demonstrated a peak at 458 nm corresponding to the plasmon absorbance of rapidly synthesized silver nanoparticles that was characterized by UV–Vis spectrophotometer. The morphology and size of the benign silver nanoparticles were carried out by the transmission electron microscope (TEM) and field emission scanning electron microscope (FE-SEM). The sizes of the synthesized silver nanoparticles were found to be in the range of 5–60 nm. The structural characteristics of biomolecules hosted silver nanoparticles were studied by X-ray diffraction. The chemical composition of elements present in the solution was determined by energy dispersive spectrum. The FTIR analysis of the nanoparticles indicated the presence of proteins, which may be acting as capping agents around the nanoparticles. This study reports that synthesis is useful to avoid toxic chemicals with adverse effects in medical applications rather than physical and chemical methods.  相似文献   

17.
The potential use of alanine for the production of nanoparticles is presented here for the first time. Silver nanoparticles were synthesized using a simple green method, namely the thermal treatment of silver nitrate aqueous solutions with dl-alanine. The latter compound was employed both as a reducing and a capping agent. Particles with average size equal to 7.5 nm, face-centered cubic crystalline structure, narrow size distribution, and spherical shape were obtained. Interaction between the silver ions present on the surface of the nanoparticles and the amine group of the dl-alanine molecule seems to be responsible for reduction of the silver ions and for the stability of the colloid. The bio-hybrid nano-composite was used as an ESR dosimeter. The amount of silver nanoparticles in the nanocomposite was not sufficient to cause considerable loss of tissue equivalency. Moreover, the samples containing nanoparticles presented increased sensitivity and reduced energetic dependence as compared with pure dl-alanine, contributing to the construction of small-sized dosimeters.  相似文献   

18.
A simple and green chemical method has been developed to synthesize stable bare and capped silver nanoparticles based on the reduction of silver ions by glucose and capping by poly(α,γ,l-glutamic acid) (PGA). The use of ammonia during synthesis was avoided. PGA has had a dual role in the synthesis and was used as a capping agent to make the silver nanoparticle more biocompatible and to protect the nanoparticles from agglomerating in the liquid medium. The synthesized PGA-capped silver nanoparticles in the size range 5–45 nm were stable over long periods of time, without signs of precipitation. Morphological examination has shown that the silver nanoparticles had a nearly spherical, multiply twinned structure. The effects of the reaction temperature and the reaction time during the synthesis were investigated too. The biocompatibility of the PGA-capped silver nanoparticles is discussed in terms of in vitro toxicity with human intestinal Caco-2 cells. The samples were characterized by UV–Visible spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, and zeta potential measurements.  相似文献   

19.
Rezaei B  Damiri S 《Talanta》2010,83(1):197-204
Highly uniform dendritic silver nanostructures as a new electrode material, have been synthesized by electrodeposition on the glassy carbon (GC) electrode with assistance of polyethylene glycol 400 (PEG-400) as a soft template, to achieve a superior electrocatalyst with enhanced detection sensitivity in electroanalysis compared to conventional bulk Ag electrodes. The effects of the growth conditions such as concentrations of the reagents and applied potentials on the morphology and structure of as-prepared tree-like nanostructures have also been investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD). In the silver nanodendrites (AgNDs), the diameter of the trunk is around 100-200 nm with length up to 10-40 μm, and the length of its branches can reach 10 μm. In addition, the electrocatalytic behavior of this modified electrode was exploited as a sensitive detection system for the reduction of RDX high explosive, hydrogen peroxide and hexacyanoferrate (HCF) by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. Also, the obtained results were compared to multiwalled carbon nanotubes (MWCNTs) and bulk silver electrodes. These studies show that the nanodendritic silvers significantly increase the electron-transfer rate of the electrochemical reactions by as much as 1-2 orders of magnitude.  相似文献   

20.
Dubas ST  Pimpan V 《Talanta》2008,76(1):29-33
Silver nanoparticles synthesized by a reagent less method involving only UV radiation have been used in colorimetric assay for the detection of ammonia in solution. The silver nanoparticles were synthesized by the exposure of a silver nitrate solution to a low-power UV source in the presence of poly(methacrylic acid) (PMA), which acted both as reducing and capping agent. The synthesis of the silver nanoparticles was studied by monitoring the changes in position and amplitude of the localized plasmon resonance (LSPR) band using UV-vis spectroscopy. The morphology of the particles was studied using transmission electron microscopy which confirmed the formation of spherical particles with an average particle size around 8 nm. Interestingly, the silver nanoparticles solution was found to display a strong color shift from purple to yellow upon mixing with increasing concentration of ammonia ranging from 5 to 100 ppm. Hence, the nanoparticles prepared with this method could be used as colorimetric assay for sensing applications of ammonia in water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号