首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 434 毫秒
1.
The article presents the findings of microscopic and electrochemical studies of size-dependent gold particles electrooxidation. Gold particles were immobilized on the surface of carbon-containing screen-printed electrodes. The experiment demonstrated that the transition from macroparticles to nanoparticles caused a shift of the maximum current potential of gold oxidation into the area with more negative potentials. A decrease in particle size resulted in an increase in the electrochemical activity of metal. A positive correlation between experimental and calculated curves confirms a mathematical model (2) and correctness of the calculations. Measured parameters of voltammograms, in particular, maximum current potential, can be used to describe the electrochemical activity and energy properties of nanoparticles.  相似文献   

2.
A mathematical model is proposed that describes the processes of electrooxidation of metal nanoparticles localized on the surface of an indifferent macroelectrode. In contrast to previously proposed models based on geometric factors (shapes of particles and diffusion zones), the proposed model has introduced thermodynamic considerations which take into account the energy differences between the nanoparticle ensembles from microparticles and macroparticles. A series of voltammograms was obtained as a result of calculations and characteristic relationships between the different parameters were found. An analysis of the findings, on the one hand, predicts the shape and characteristic features of the experimental voltammograms and, on the other hand, provides information regarding energetic properties of the nanoparticles.  相似文献   

3.
This article presents the findings of microscopic and electrochemical studies of electrooxidation of silver nanoparticles of varying sizes in comparison with “bulk” silver. Silver particles were immobilized on the surface of indifferent carbon-containing screen-printed electrodes. Vacuum-deposited silver represented the “bulk” electrode. The calculations and experimental studies demonstrated that the transition from macro- to nanostructural electrodes is followed by a shift of the maximum current potential of metal oxidation into the area with more negative potentials. A positive correlation between experimental and calculated data confirms once again a relevant application of the earlier proposed mathematical model and the possible use of the shift of the maximum current potential of electrooxidation to describe the electrochemical activity and surface energy properties of metal nanoparticles.  相似文献   

4.
The article presents the findings of microscopic and electrochemical studies of electrooxidation of bismuth particle of varying sizes. Bismuth particles were immobilized on the surface of indifferent carbon containing screen-printed electrodes. The calculations and experimental studies demonstrated that the transition from macroparticles to nanoparticles caused a shift of the maximum current potential of bismuth oxidation into the area with more negative potentials. A positive correlation between experimental and calculated data confirms once again a relevant application of the earlier proposed mathematical model and the possible use of the shift of the maximum current potential of electrooxidation to describe electrochemical activity and energy properties of metal nanoparticles.  相似文献   

5.

The article presents the findings of microscopic and electrochemical studies of electrooxidation of bismuth particle of varying sizes. Bismuth particles were immobilized on the surface of indifferent carbon containing screen-printed electrodes. The calculations and experimental studies demonstrated that the transition from macroparticles to nanoparticles caused a shift of the maximum current potential of bismuth oxidation into the area with more negative potentials. A positive correlation between experimental and calculated data confirms once again a relevant application of the earlier proposed mathematical model and the possible use of the shift of the maximum current potential of electrooxidation to describe electrochemical activity and energy properties of metal nanoparticles.

  相似文献   

6.
It is shown that nanoparticles localized on a foreign solid electrode may display two opposite shifts of dissolution potential, namely, a shift toward either more positive or more negative values as compared with the equilibrium potential of M n+/M 0 or the potential of bulk metal electrooxidation. The observed phenomena are interpreted in view of three energy states of substance, which are realized depending on contribution of the surface Gibbs free energy (ΔG°) to the energy of the system. Literature data concerning different metal-substrate pairs and specially conducted experimental investigations of electrooxidation of gold nanoparticles (radius equal to 10 and 150?nm), which are localized on the surface of glassy carbon, bulk gold, and platinum electrodes are presented and discussed. A shift of maximum current potential of small nanoparticles oxidation toward more positive values is observed in this series. The oxidation potential of large nanoparticles is not affected by the nature of the substrate. In all cases, electrooxidation of gold nanoparticles occurs at the more negative potentials than those of the bulk gold electrooxidation. It is shown that depending on the nature of the substrate and nanoparticle size, the dominating effect is either interaction of nanoparticles with the substrate (ΔG°?<?0) and electrochemical potential shifts toward positive values or impact of surface Gibbs free energy of nanoparticles (ΔG°?>?0) into energy of the system and electrochemical potential shifts toward negative values. The validity of the proposed assumptions is confirmed by good correlation of literature and our experimental data with calculated ones.  相似文献   

7.
The electrooxidation of ethylene glycol(EG) on the surface of gold nanoparticles(AuNPs) in alkaline medium was investigated.AuNPs were electrodeposited on pencil graphite(PG) by fast scan cyclic voltammetry.Different sizes of AuNPs deposited on the surface of PG(AuNPs/PG) were used for the electrooxidation process.AuNPs were electrodeposited on PG at various deposition times in the same potential range but with different scan rates and scan cycles.Scanning electron microscopy(SEM),transmission electron microscopy(TEM) and X-ray diffraction(XRD) were used to visualize and characterize the prepared AuNPs/PG electrodes.Cyclic voltammograms were also used to investigate the electrooxidation of EG.The effects of EG and supporting electrolyte concentrations,scan rate,particle size of AuNPs and final potential limit on the electrooxidation process have been investigated.Further studies showed that the electrooxidation of EG is affected by temperature of the medium.The prepared AuNPs showed stability after long-term use.  相似文献   

8.
The support materials play a critical role for the electrocatalytic oxidation of ethanol on precious metal catalysts in fuel cells. Here, we report the poly(3,4-ethylenedioxythiophene) combined with reduced graphene oxide (PEDOT-RGO) as the support of Pd nanoparticles (NPs) for ethanol electrooxidation in alkaline medium. The as-prepared Pd/PEDOT-RGO composite catalysts are characterized by Raman spectrometer, X-ray diffraction, transmission electron microcopy, and scanning electron microcopy. PEDOT-RGO composite with the porous structure facilitates the dispersion of Pd NPs with a smaller size leading to the increase of electrochemical active surface area. The electrochemical properties and electrocatalytic activities of Pd/PEDOT-RGO hybrid are evaluated by cyclic voltammetry, chronoamperometry, CO stripping voltammetry, electrochemical impedance spectroscopy (EIS) and Tafel analysis. The results suggest that Pd/PEDOT-RGO hybrid shows a higher electrocatalytic activity, a better long-term stability, and the poisoning tolerance for the ethanol electrooxidation than Pd on carbon black. EIS and Tafel analysis indicate that PEDOT-RGO improves the kinetics of ethanol electrooxidation on the Pd NPs and is an efficient support in fuel cells.  相似文献   

9.
采用欠电位沉积(upd)方法在Pt 表面沉积亚单层的Ru制备出upd-Ru/Pt 电极. 通过欠电位沉积前后电极在0.5 mol·L-1 H2SO4溶液中循环伏安图-152 - 128 mV(vs Ag/AgCl)电位范围内对氢区的数值积分确定Pt表面Ru 的覆盖度. 用电化学方法测试了甲醇在upd-Ru/Pt电极上的催化氧化, 并讨论分析了欠电位沉积电位和Ru的表面覆盖度对甲醇氧化的影响. 结果表明, Ru能够欠电位沉积到Pt表面. Pt表面欠电位沉积少量的Ru 即能大大促进甲醇的氧化.只要控制upd-Ru的沉积量, upd-Ru原子就能大大促进甲醇氧化而与沉积电位无关. Ru原子对甲醇氧化的促进作用与Ru和Pt是否形成合金无关, 而取决于Ru 在Pt表面的百分含量.  相似文献   

10.
采用固相-液相两步混合法制备了由碳纳米管(CNTs)和石墨烯纳米片(GNPs)组成的CNTs-GNPs复合载体。以乙二醇还原法将Pd纳米粒子沉积于复合碳载体上,制得Pd/CNTs-GNPs催化剂。以透射电子显微镜、X射线衍射及X射线光电子能谱表征催化剂的形貌、组成和结构;以电化学方法考察催化剂的甲醇电氧化性能。结果表明,Pd/CNTs-GNPs(1/4)(GNPs质量分数为1/4)催化剂具有较大的电化学表面积和较高的甲醇电氧化活性,其甲醇氧化峰电流密度可达Pd/CNTs催化剂的1.97倍。催化剂的高活性得益于CNTs-GNPs载体的一维/二维复合结构使Pd纳米粒子具有良好的分散性能。计时电流实验表明,与单一载体负载Pd催化剂相比,复合载体负载Pd催化剂具有较强的抗中毒能力。  相似文献   

11.
This paper reports on the modification of gold electrodes with self‐assembled layers (SAMs) composed of meso‐2,3‐dimercaptosuccinic acid, cysteamine and gold nanoparticles, respectively and their application to quantitative determination of norepinephrine alone and in the presence of ascorbic and uric acids in solution at pH 7. The modification was carried out on two kinds of templates: a bare gold electrode (2D electrode) and a gold electrode coated in the first step with gold nanoparticles (3D electrode). Cyclic voltammograms reveal an enhancement of the norepinephrine electrooxidation in comparison to a bare, (non‐modified) gold electrode. The oxidation peaks for norepinephrine, ascorbic acid and uric acid have a peak‐to‐peak separation that enables their selective determination even in a complex mixture.  相似文献   

12.
The analytical treatment of a model considering the electrooxidation of p-porous silicon layers under galvanostatic conditions is able to give account of experimental facts such as the shape and location of the electroluminescence peak as well as of the spectral shift of the electroluminescence peak produced by oxidation. The proposed model considers electroluminescence to be the result of electron injection into the conduction band by an adsorbed intermediate produced by electrooxidation of the surface coverage with hydrogen or siloxene of the silicon nanocrystallites. The access of holes to the surface is made possible by low accumulation layer conditions and is the rate determining step in the electroluminescence mechanism. In this way it is possible to give a satisfactory explanation to the shift towards the blue experimented by the electroluminiscence emission maximum as a consequence of electrooxidation.  相似文献   

13.
Cobalt-modified nickel-zinc catalyst CuNi(Zn)Co is prepared on a copper substrate by using electrodeposition. Its catalytic efficiency for methanol oxidation is studied with cyclic voltammetry, chronoamperometry, and chronopotentiometry techniques. The surface morphology and chemical composition of catalyst are characterized by scanning electron microscopy and energy dispersive X-ray spectroscopy. The oxidation kinetic parameters activation energy (Ea), active species on the surface (Γ), and rate constant (k) are determined from cyclic voltammograms which are performed at different methanol concentrations and temperatures. The results show that Ni(Zn)Co catalyst has higher catalytic activity than Ni, Co, and NiZn coatings as a composite catalyst for a promising choice of methanol electrooxidation in the alkaline medium.  相似文献   

14.
通过原位聚合法制备了以超支化聚合物的氮修饰的PdNx/C催化剂, 并考察了其催化甲酸电氧化反应的性能. 采用透射电子显微镜(TEM)、 X射线光电子能谱(XPS)和X射线衍射(XRD)等技术研究了氮的引入对催化活性组分Pd的形貌及表面电子形态的影响. 结果表明, 修饰氮后Pd纳米粒子粒径可稳定在2 nm, 并且保持了较高的分散度, 改善了表面Pd电子状态. 与Pd/C催化剂相比, 氮修饰的PdN20/C用于甲酸电氧化的Pd单位质量比活性提高了10.9%.  相似文献   

15.
Palladium nanoparticles deposited on the surface of a carbon-paste electrode exhibit electrocatalytic activity in the oxidation of oxalic acid. The surface topography of modified carbon-paste electrodes (CPEs) and the shapes of the metal crystallite particles were studied with atomic-force microscopy. These data were correlated with the voltammetric parameters of the electrooxidation of palladium and oxalic acid. As the dispersity of palladium nanoparticles electrodeposited on the CPE surface increased and their size diminished, the peak current of the catalytic oxidation of oxalic acid decreased, whereas the increment of this current increased as compared to the limiting current of metal oxidation. Evidently, this was due to an increase in the catalytic activity of the metal. The use of CPE modified with palladium nanoparticles instead of CPE containing palladium macrocrystals lowered the detection limit for the analyte by one order of magnitude (down to 2 × 10?5 M).  相似文献   

16.
纳米材料特有的尺寸效应、量子效应和表面效应使其具有许多异于常规材料的性质 ,在催化、生物传感器、微电子器件和磁性材料等诸多领域都有广泛的应用前景 [1] .已有专家预言 ,与纳米材料相关的技术将在新世纪经济发展中起主导作用 ,对其研究是目前科学研究中的热点 .金纳米颗粒是目前研究得最多的金属纳米材料体系 .传统的金纳米颗粒的制备方法以溶胶 -凝胶法为主 [2~ 4 ] ,所制备的金纳米颗粒的粒径较大 (一般大于 1 0 nm) ,粒径分布不均匀 ,易于团聚 ,因而限制了其应用 .为了解决上述问题 ,Brust等 [5]将硫醇化合物在金属表面的自组装…  相似文献   

17.
In this paper, formic acid electrooxidation on ethylidyne modified Pt nanoparticles is reported. The formation as well as the stability electrochemical range of the ethylidyne adlayers was studied by surface enhanced Raman spectroscopy (SERS) and cyclic voltammetry. The presence of adsorbed ethylidyne on platinum nanoparticles improved their electrocatalytic activity towards formic acid oxidation, which could be attributed to an instabilization of the carbon monoxide poisonous species as evidenced by SERS. The use of in situ spectroscopic measurements with electrocatalysts similar to those applied in practice is highlighted.  相似文献   

18.
采用扫描循环伏安法及表面增强拉曼散射光谱研究了一氧化碳(CO)在钯修饰金电极上的吸附与氧化.结果表明CO氧化电位随钯膜厚度增加而正移,同时C-O伸缩振动频率红移.本文利用d能带理论解释观察现象.应力效应使CO吸附变强,难以氧化;但配体效应使CO吸附变弱,易于氧化.在薄膜中配体效应强于应力效应.  相似文献   

19.
乙醇在Ni-Mo合金电极上氧化的动力学模型   总被引:2,自引:0,他引:2  
利用循环伏安以及稳态极化曲线等方法研究了在1mol.L^-1KOH溶液中,乙醇在电沉积Ni-Mo合金电极上氧化的电化学特性,提出了一个数学模型来预计乙醇在电沉积Ni-Mo合金电极上的电化学行为,在碱性溶液中,Ni(OH)2/NiOOH电对的氧化还原过程是乙醇氧化的前期步骤,Ni(OH)2/NiOOH)电对相应的速度常数(即k1和k-1)是电极电位的函数,乙醇氧化是通过一个速度常数为kc1的化学反应来完成,推导出了各个动力学方程并将实验数据与方程进行比较而获得各个动力学参数,电化学速度常数k1(E)=1.41*10^7exp(0.5FE/RT)mmol.cm^-2.s^-1以及k-1(E)=0.711exp(0.5FE/RT)mmol.cm^-2.s^-1,E是相对饱和甘汞电极(SCE)的电极电位,而化学反应的速  相似文献   

20.
The electrocatalytic activity of platinised platinum (Pt Pt) electrodes in the electrooxidation of oxalic acid was found to be dependent on the degree of ageing. Pt Pt electrodes prepared by electrodeposition were aged by cycling the potential with an upper positive potential limit corresponding to Pt surface oxidation. This procedure results in surface reconstruction with an increase of mean particle size. The changes of surface area and roughness of Pt Pt during ageing have been discussed in terms of sintering processes for supported catalysts or ceramic materials. An increase of mean particle size is accompanied by a decrease in oxygen adsorption, e.g. through changes in the surface concentration of defects on the particle surface. Two possible mechanisms for the electrooxidation of oxalic acid involving either an oxygen adsorbate species (CE mechanism) or direct electrode transfer can be distinguished. Changes of oxidation rate are related to changes of oxygen coverage with ageing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号